Skip to main content
Log in

Adaptation on the space of finite signed measures

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

Given an i.i.d. sample from a probability measure P on ℝ, an estimator is constructed that efficiently estimates P in the bounded-Lipschitz metric for weak convergence of probability measures, and, at the same time, estimates the density of P — if it exists (but without assuming it does) — at the best possible rate of convergence in total variation loss (that is, in L 1-loss for densities).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Bickel and Y. Ritov, “Nonparametric Estimators which can be ‘Plugged-In’,” Ann. Statist. 31, 1033–1053 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Bousquet, “Concentration Inequalities for Sub-Additive Functions Using the Entropy Method”, in: Progress in Probability, Vol. 56: Stochastic Inequalities and Applications, Ed. by E. Giné, C. Houdré, and D. Nualart (Birkhäuser, Boston, 2003), pp. 213–247.

    Google Scholar 

  3. A. S. Dalalyan, G. K. Golubev, and A. B. Tsybakov, “Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency”, Ann. Statist. 34, 169–201 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. de la Peña and E. Giné, Decoupling. From Dependence to Independence (Springer, New York, 1999).

    Google Scholar 

  5. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation (Springer, New York, 2001).

    MATH  Google Scholar 

  6. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Density Estimation by Wavelet Thresholding”, Ann. Statist. 24, 508–539 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Ginée and D. M. Mason, “On Local U-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables”, Ann. Statist. 35, 1105–1145 (2007).

    Article  MathSciNet  Google Scholar 

  8. E. Giné and R. Nickl, “Uniform Central Limit Theorems for Kernel Density Estimators”, Probab. Theory Related Fields, 141, 333–387 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Giné and R. Nickl, “An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation”, Probab. Theory Related Fields, 2008 (in press).

  10. E. Giné and J. Zinn, “Empirical Processes Indexed by Lipschitz Functions”, Ann. Probab. 14, 1329–1338 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. K. Golubev and B. Y. Levit, “Distribution Function Estimation: Adaptive Smoothing”, Math.Methods Statist. 5, 383–403 (1996).

    MathSciNet  MATH  Google Scholar 

  12. A. Juditsky and S. Lambert-Lacroix, “OnMinimaxDensity Estimation on ℝ”, Bernoulli 10, 187–220 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Kerkyacharian, D. Picard, and K. Tribouley, “L p Adaptive Density Estimation”, Bernoulli 2, 229–247 (1996).

    MathSciNet  MATH  Google Scholar 

  14. O. V. Lepski, “Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates”, Theory Probab. Appl. 36, 682–697 (1991).

    Article  Google Scholar 

  15. O. V. Lepski and V.G. Spokoiny, “Optimal PointwiseAdaptiveMethods inNonparametric Estimation”, Ann. Statist. 25, 2512–2546 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Nickl and B. M. Pötscher, “Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov-and Sobolev-Type”, J. Theoret. Probab. 20, 177–199 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Talagrand, “New Concentration Inequalities in Product Spaces”, Invent. Math. 126, 505–563 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes (Springer, New York, 1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Giné.

About this article

Cite this article

Giné, E., Nickl, R. Adaptation on the space of finite signed measures. Math. Meth. Stat. 17, 113–122 (2008). https://doi.org/10.3103/S1066530708020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530708020026

Keywords

2000 Mathematics Subject Classification

Navigation