Skip to main content
Log in

Kernel regression estimation for continuous spatial processes

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We investigate here a kernel estimate of the spatial regression function r(x) = E(Y u | X u = x), x ∈ ℝd, of a stationary multidimensional spatial process { Z u = (X u, Y u), u ∈ ℝN}. The weak and strong consistency of the estimate is shown under sufficient conditions on the mixing coefficients and the bandwidth, when the process is observed over a rectangular domain of ℝN. Special attention is paid to achieve optimal and suroptimal strong rates of convergence. It is also shown that this suroptimal rate is preserved by using a suitable spatial sampling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Anselin and R. J. G. M. Florax, New Directions in Spatial Econometrics (Springer, Berlin, 1995).

    MATH  Google Scholar 

  2. R. M. Balan and B. G. Ivano, “A Markov Property for Set-Indexed Processes”, J. Theor. Probab. 15, 553–588 (2002).

    Article  MATH  Google Scholar 

  3. G. Banon and H. T. Nguyen, “Sur l’estimation récurrente de la densité pour un processus de Markov”, C. R. Acad. Sci. Paris 286, 691–694 (1978).

    MATH  MathSciNet  Google Scholar 

  4. G. Biau, “Spatial Kernel Density Estimation”, Math. Methods Statist. 12, 371–390 (2003).

    MathSciNet  Google Scholar 

  5. G. Biau and B. Cadre, “Nonparametric Spatial Prediction”, Statist. Inference Stochastic Proc. 7, 327–349 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Blanke and B. Pumo, “Optimal Sampling for Density Estimation in Continuous Time”, J. Time Series Anal. 24(1), 1–23 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Blanke and D. Bosq, “A Family of Minimax Rates for Density Estimators in Continuous Time”, Stochastic Anal. and Appl. 18, 871–900 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Bosq, “Estimation et prévision nonparamétrique d’un processus stationnaire”, C. R. Acad. Sci. Paris 308, 453–456 (1989).

    MATH  MathSciNet  Google Scholar 

  9. D. Bosq, “Parametric Rates of Nonparametric Estimators and Predictors for Continuous Time Processes”, Ann. Statist. 25, 982–1000 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Bosq, Nonparametric Statistics for Stochastic Processes — Estimation and Prediction, in Lecture Notes in Statist., 2nd ed. (Springer, New York, 1998).

    Google Scholar 

  11. D. Bosq, F. Merlevède, and V. Peligrad, “Asymptotic Normality for Density Kernel Estimators in Discrete and Continuous Time”, J. Multivar. Anal. 68, 78–95 (1999).

    Article  MATH  Google Scholar 

  12. M. Carbon, C. Francq, and L. T. Tran, “Kernel Regression Estimation for Random Fields”, J. Statist. Plann. Inference 137(3), 778–798 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Carbon, “Polygon des fréquences pour des champs aléatoires”, C. R. Acad. Sci. Paris I 342(9), 693–696 (2006).

    MATH  MathSciNet  Google Scholar 

  14. M. Carbon, M. Hallin, and L. T. Tran, “Kernel Density Estimation for Random Fields”, Statist. and Probab. Lett. 36, 115–125 (1996).

    Article  Google Scholar 

  15. M. Carbon, L. T. Tran, and B. Wu, “Kernel Density Estimation for Random Fields: The L 1 Theory”, Nonparam. Statist. 6, 157–170 (1997).

    Article  Google Scholar 

  16. N. A. C. Cressie, Statistics for Spatial Data, in Wiley Series in Probability and Mathematical Statistics (Wiley, New York, 1991).

    Google Scholar 

  17. S. Dabo-Niang and A. F. Yao, Density Estimation for Spatial Functional Random Variables Preprint (2007).

  18. S. Dabo-Niang, “Kernel Density Estimator in an Infinite Dimensional Space with a Rate of Convergence in the Case of Diffusion Process”, Appl. Math. Lett. 17(4), 381–386 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Dabo-Niang and N. Rhomari, “Estimation non paramétrique de la régression avec variable explicative dans un espace métrique”, C. R. Acad. Sci. Paris Ser. I 336, 75–80 (2003)

    MATH  MathSciNet  Google Scholar 

  20. J. Dielbolt and D. Guegan, Probabilistic Properties of the General Nonlinear Auto-Regressive Process of Order One, Technical Report No. 125 (Univ. Paris VI, Paris, 1992).

    Google Scholar 

  21. P. Doukhan, Mixing — Properties and Examples, in Lecture Notes in Statist. (Springer, New York, 1994).

    Google Scholar 

  22. A. A. Efros and T. Leng, “Texture Synthesis by Non-Parametric Sampling”, in Proc. IEEE Internat. Conf. on Computer Vision, Corfu, Greece (1999), pp. 1033–1038.

  23. F. Ferraty and Ph. Vieu, Nonparametric Functional Data Analysis (Springer, New York, 2006).

    MATH  Google Scholar 

  24. X. Guyon, Random Fields on a Network — Modeling, Statistics, and Applications (Springer, New York, 1995).

    MATH  Google Scholar 

  25. L. Györfi, W. Härdle, P. Sarda, and P. Vieu, (1990). Nonparametric Curve Estimation from Time Series, in Lecture Notes in Statist. (Springer, New York, 1990), Vol. 60.

    Google Scholar 

  26. M. Hallin, Z. Lu, and L. T. Tran, “Kernel Density Estimation for Spatial Processes: The L 1 Theory”, J. Multivar. Anal. 88(1), 61–75 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Hallin, Z. Lu, and L. T. Tran, “Local Linear Spatial Regression”, Ann. Statist. 32(6), 2469–2500 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. J. H. P. Mc Kean, “Brownian Motion with Several-Dimensional Time”, Theory Probab. Appl. 8, 335–354 (1963).

    Article  MathSciNet  Google Scholar 

  29. S. N. Lahiri, “Resampling Methods for Spatial Regression Models under a Class of Stochastic Designs”, Ann. Statist. 34(4), 1774–1813 (2006).

    Article  MathSciNet  Google Scholar 

  30. F. Leblanc, “Density Estimation for a Class of Continuous Time Processes”, Math. Methods Statist. 6, 171–199 (1997).

    MATH  MathSciNet  Google Scholar 

  31. E. Levina and P. J. Bickel, “Texture Synthesis and Non-Parametric Resampling of Random Fields”, Ann. Statist. 34(4), 1751–1773 (2006).

    Article  MathSciNet  Google Scholar 

  32. P. Lévy, “Exemples de processus doubles de Markoff”, C. R. Acad. Sci. Paris 226, 307–308 (1948).

    MATH  MathSciNet  Google Scholar 

  33. Z. Lu and X. Chen, “Spatial Nonparametric Regression Estimation: Non-Isotropic Case”, Acta Mathematicae Applicatae Sinica, English Series, 18(4), 641–656 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  34. Z. Lu and X. Chen, “Spatial Kernel Regression Estimation: Weak Consistency”, Statist. and Probab. Lett. 68, 125–136 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  35. Z. Lu, “Weak Consistency of Nonparametric Kernel Regression under Alpha-Mixing Dependence”, Chinese Science Bull. 41, 2219–2221 (1996).

    Google Scholar 

  36. Z. Lu and P. Chen, “Distribution-Free Strong Consistency for Nonparametric Kernel Regression Involving Nonlinear Time Series”, J. Statist. Plann. Inference 65, 67–86 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Masry and D. Tjostheim, “Nonparametric Estimation and Identification of Nonlinear ARCH Time Series: Strong Convergence and Asymptotic Normality”, Econom. Theory 11, 258–289 (1995).

    Article  MathSciNet  Google Scholar 

  38. M. F. Moura and S. Goswami, “Gauss—Markov Random Fields (Gmrf) with Continuous Indices”, IEEE Trans. Inform. Theory 46, 1560–1573 (1997).

    Article  MathSciNet  Google Scholar 

  39. L. Pitt and R. Robeva, “On the Sharp Markov Property for Gaussian Random Fields and Spectral Synthesis in Spaces of Bessel Potentials”, Ann. Probab. 31, 1138–1176 (2003).

    MathSciNet  Google Scholar 

  40. L. Pitt and R. Robeva, “On the Equality of Sharp and Germ Sigma-Fields for Gaussian Processes and Fields”, Pliska Studia Mathematica 16, 183–205 (2004).

    MathSciNet  Google Scholar 

  41. D. N. Politis and J. P. Romano, “Nonparametric Resampling for Homogeneous Strong Mixing Random Fields,” J. Multivar. Anal. 47(2), 301–328 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  42. E. Rio, Théorie Asymptotic des Processus Aléatoires Faiblement Dépendants (Springer, Berlin, 2000).

    MATH  Google Scholar 

  43. B. Ripley, Spatial Statistics (Wiley, New York, 1981).

    MATH  Google Scholar 

  44. G. G. Roussas, “Nonparametric Estimation in Mixing Sequences of Random Variables”, J. Statist. Plann. Inference 18, 135–149 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  45. F. Russo, “Étude de la propriété de Markov étroite en relation avec les processus planaires à accroissements indépendants”, in Lecture Notes in Math. (Springer, 1984), Vol. 1059, pp. 353–378.

    Google Scholar 

  46. L. T. Tran, “Kernel Density Estimation on Random Fields”, J. Multivar. Anal. 34, 37–53 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  47. L. T. Tran and S. Yakowitz, “Nearest Neighbor Estimators for Random Fields”, J. Multivar. Anal. 44, 23–46 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  48. Y. M. Truong and C. J. Stone, “Nonparametric Function Estimation Involving Time Series”, Ann. Statist. 20, 77–97 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  49. J. B. Walsh, Martingales with a Multidimensional Parameter and Stochastic Integrals in the Plane (Laboratoire de Probabilités. Univ. Paris VI, Paris, 1976–1977), Cours III cycle.

    Google Scholar 

  50. S. Yakowitz, “Nearest-Neighbor Methods for Time Series Analysis”, J. Time Series Anal. 8, 235–247 (1987).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dabo-Niang.

About this article

Cite this article

Dabo-Niang, S., Yao, A.F. Kernel regression estimation for continuous spatial processes. Math. Meth. Stat. 16, 298–317 (2007). https://doi.org/10.3103/S1066530707040023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530707040023

Key words

2000 Mathematics Subject Classification

Navigation