A. Barron, “Are Bayes rules consistent in information?” in Open Problems in Communication and Computation, Ed. by T. M. Cover and B. Gopinath (Springer, New York, 1987), pp. 85–91.
Google Scholar
L. Birgé, “On estimating a density using Hellinger distance and some other strange facts”, Probab. Theory Rel. Fields 71, 271–291 (1986).
MATH
Article
Google Scholar
L. Birgé, “Model selection via testing: an alternative to (penalized) maximum likelihood estimators”, Ann. Inst. H. Poincaré (B) Probab. et Statist. 42, 273–325 (2006).
MATH
Article
Google Scholar
L. Birgé, “The Brouwer lecture 2005: Statistical estimation with model selection”, available at arXiv:math.ST/0605187 (2006).
F. Bunea, A. B. Tsybakov, and M. H. Wegkamp, “Aggregation for Gaussian regression”, Ann. Statist. 35, 1674–1697 (2007).
Article
MATH
MathSciNet
Google Scholar
O. Catoni, “Universal” Aggregation Rules with Exact Bias Bounds, Preprint n. 510 (Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7, Paris, 1999), available at http://www.proba.jussieu.fr/mathdoc/preprints.
Google Scholar
O. Catoni, (2004). Statistical Learning Theory and Stochastic Optimization in Ecole d’Eté de Probabilités de Saint-Flour XXXI-2001. Lecture Notes in Mathematics (Springer, New York, 2004), Vol. 1851.
Google Scholar
C. Dalelane, “Exact oracle inequality for a sharp adaptive kernel density estimator”, 2005, available at http://hal.archives-ouvertes.fr/hal-00004753.
L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation (Springer, New York, 2001).
MATH
Google Scholar
G. K. Golubev, “LAN in nonparametric estimation of functions and lower bounds for quadratic risks”, Theory Probab. Appl. 36, 152–157 (1991).
MATH
Article
MathSciNet
Google Scholar
G. K. Golubev, “Nonparametric estimation of smooth probability densities in L
2”, Problems of Inform. Transmission 28, 44–54 (1992).
MathSciNet
Google Scholar
A. Juditsky and A. Nemirovski, “Functional aggregation for nonparametric regression”, Ann. Statist. 28, 681–712 (2000).
MATH
Article
MathSciNet
Google Scholar
J. Q. Li and A. Barron, “Mixture density estimation”, in Advances in Neural Information Processings Systems, Ed. by S. A. Solla, T. K. Leen, and K.-R. Muller, (Morgan Kaufmann Publ., San Mateo, CA, 1999), Vol. 12.
Google Scholar
M. C. Marron and M. P. Wand, “Exact mean integrated square error”, Ann. Statist. 20, 712–713 (1992).
MATH
MathSciNet
Google Scholar
A. Nemirovski, Topics in Non-parametric Statistics, in Ecole d’Eté de Probabilités de Saint-Flour XXVIII-1998. Lecture Notes in Mathematics (Springer, New York, 2000), Vol. 1738.
Google Scholar
M. S. Pinsker, “Optimal filtering of square integrable signals in Gaussian white noise”, Problems Inform. Transmission 16, 120–133 (1980).
MATH
Google Scholar
P. Rigollet, “Adaptive density estimation using the blockwise Stein method”, Bernoulli 12, 351–370 (2006).
MATH
MathSciNet
Article
Google Scholar
P. Rigollet, “Inégalités d’oracle, agrégation et adaptation”, PhD thesis (2006), available at http://tel.archives-ouvertes.fr/tel-00115494.
A. Samarov and A. B. Tsybakov, “Aggregation of density estimators and dimension reduction”, in Advances in Statistical Modeling and Inference. Essays in Honor of Kjell A. Doksum, Ed. by V. Nair (World Scientific, Singapore e.a., 2007), pp. 233–251.
Google Scholar
M. Schipper, “Optimal rates and constants in L
2-minimax estimation of probability density functions”, Math. Methods Statist. 5, 253–274 (1996).
MATH
MathSciNet
Google Scholar
D. W. Scott, Multivariate Density Estimation (Wiley, New York, 1992).
MATH
Google Scholar
S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth selection method for kernel density estimation”, J. Roy. Statist. Soc. Ser. B 53, 683–690 (1991).
MATH
MathSciNet
Google Scholar
B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986).
MATH
Google Scholar
C. J. Stone, “An asymptotically optimal window selection rule for kernel density estimates”, Ann. Statist. 12, 1285–1297 (1984).
MATH
MathSciNet
Google Scholar
A. Tsybakov, (2003). “Optimal rates of aggregation”, in Computational Learning Theory and Kernel Machines. Proc. 16th Annual Conference on Learning Theory (COLT) and 7th Annual Workshop on Kernel Machines, Ed. by B. Schölkopf and M. Warmuth, Lecture Notes in Artificial Intelligence (Springer, Heidelberg, 2003), Vol. 2777, pp. 303–313.
Google Scholar
A. Tsybakov, Introduction à l’estimation non-paramétrique (Springer, Berlin, 2004).
MATH
Google Scholar
M. P. Wand and M. C. Jones, Kernel Smoothing (Chapman and Hall, London, 1995).
MATH
Google Scholar
M. H. Wegkamp, “Quasi-universal bandwidth selection for kernel density estimators”, Canad. J. Statist. 27, 409–420 (1999).
MATH
Article
MathSciNet
Google Scholar
Y. Yang, “Mixing strategies for density estimation”, Ann. Statist. 28, 75–87 (2000).
MATH
Article
MathSciNet
Google Scholar
T. Zhang, “From ∈-entropy to KL-entropy: analysis of minimum information complexity density estimation”, Ann. Statist. 34, 2180–2210 (2006).
MATH
Article
MathSciNet
Google Scholar