Skip to main content
Log in

Deconvolving compactly supported densities

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

This paper addresses the statistical problem of density deconvolution under the condition that the density to be estimated has compact support. We introduce a new estimation procedure, which establishes faster rates of convergence for smooth densities as compared to the optimal rates for smooth densities with unbounded support. This framework also allows us to relax the usual condition of known error density with non-vanishing Fourier transform, so that a nonparametric class of densities is valid; therefore, even the shape of the noise density need not be assumed. These results can also be generalized for fast decaying densities with unbounded support. We prove optimality of the rates in the underlying experiment and study the practical performance of our estimator by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Butucea and C. Matias, “Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model”, Bernoulli 11, 309–340 (2005).

    MATH  MathSciNet  Google Scholar 

  2. R. J. Carroll and P. Hall, “Optimal rates of convergence for deconvolving a density”, J. Amer. Statist. Assoc. 83, 1184–1186 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. J. Carroll, D. Ruppert, and L. A. Stefanski, Measurement Error in Nonlinear Models (Chapman and Hall, London, 1995).

    MATH  Google Scholar 

  4. F. Comte, Y. Rosenholc, M.-L. Taupin, “Penalized contrast estimator for adaptive density deconvolution”, Canadian J. Statist. 34, 431–452 (2006).

    Article  MATH  Google Scholar 

  5. A. Delaigle and I. Gijbels, “Estimation of integrated squared density derivatives from a contaminated sample”, J. Roy. Statist. Soc. Ser. B 64, 869–886 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Delaigle and I. Gijbels, “Bootstrap bandwidth selection in kernel density estimation from a contaminated sample”, Ann. Inst. Statist. Math. 56, 19–47 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Delaigle and I. Gijbels, “Comparison of data-driven bandwidth selection procedures in deconvolution kernel density estimation”, Comput. Statist. and Data Anal. 45, 249–267 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Devroye, “Consistent deconvolution in density estimation”, Canadian J. Statist. 17, 235–239 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Efromovich, “Density estimation for the case of supersmooth measurement error”, J. Amer. Statist. Assoc. 92, 526–535 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Fan, “On the optimal rates of convergence for non-parametric deconvolution problems”, Ann. Statist. 19, 1257–1272 (1991).

    MATH  MathSciNet  Google Scholar 

  11. J. Fan, “Global behavior of deconvolution kernel estimates”, Statistica Sinica 1, 541–551 (1991).

    MATH  MathSciNet  Google Scholar 

  12. A. Goldenshluger, “Density deconvolution in the circular structural model”, J. Multivariate Anal. 84, 350–375 (2002).

    Google Scholar 

  13. J. Fan, “Adaptively local one-dimensional subproblems with application to a deconvolution problem”, Ann. Statist. 21, 600–610 (1993).

    MATH  MathSciNet  Google Scholar 

  14. P. Hall and P. Qiu, “Discrete-transform approach to deconvolution problems”, Biometrika 92, 135–148 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Hall and A. Meister, “A ridge-parameter approach to deconvolution”, Ann. Statist. (2007) (in press).

  16. C. H. Hesse and A. Meister, “Optimal iterative density deconvolution”, J. Nonparam. Statist. 16, 879–900 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. I. M. Johnstone, G. Kerkyacharian, D. Picard, M. Raimondo, “Wavelet deconvolution in periodic setting” (with discussion), J. Roy. Statist. Soc. Ser. B 66, 1–27 (2004).

    Article  MathSciNet  Google Scholar 

  18. W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities (Vieweg, Braunschweig, Germany, 1998).

    MATH  Google Scholar 

  19. E. Lukacs, Characteristic Functions, 2nd ed. (Griffin, London, 1970).

    MATH  Google Scholar 

  20. A. Meister, “On the effect of misspecifying the error density in a deconvolution problem”, Canadian J. Statist. 32, 439–449 (2004).

    MATH  MathSciNet  Google Scholar 

  21. A. Meister, “Non-estimability in spite of identifiability in density deconvolution”, Math. Methods Statist. 14, 479–487 (2005).

    MathSciNet  Google Scholar 

  22. A. Meister, “Density estimation with normal measurement error with unknown variance”, Statistica Sinica 16, 195–211 (2006).

    MATH  MathSciNet  Google Scholar 

  23. M. N. Neumann, “On the effect of estimating the error density in nonparametric deconvolution”, J. Nonparam. Statist. 7, 307–330 (1997).

    MATH  Google Scholar 

  24. M. Pensky and B. Vidakovic, “Adaptive wavelet estimator for nonparametric density deconvolution”, Ann. Statist. 27, 2033–2053 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  25. L. A. Stefanski and R. J. Carroll, “Deconvoluting kernel density estimators”, Statistics 21, 169–184 (1990).

    MATH  MathSciNet  Google Scholar 

  26. G. Szegö, “Inequalities for the zeros of Legendre polynomials and related functions”, Trans. Amer. Math. Soc. 39, 1–17 (1936).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Meister, A. Deconvolving compactly supported densities. Math. Meth. Stat. 16, 63–76 (2007). https://doi.org/10.3103/S106653070701005X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106653070701005X

Key words

2000 Mathematics Subject Classification

Navigation