Skip to main content
Log in

Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag–Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204 (Elsevier, Amsterdam, 2006). https://doi.org/10.1016/s0304-0208(06)80001-0

  2. A. Freed, K. Diethelm, and Yu. Luchko, “Fractional-order viscoelasticity,” in Constitutive Development Using the Fractional Calculus (NASA’s Glenn Research Center, Cleveland, Ohio, 2002).

  3. R. Gorenflo and F. Mainardi, “Random walk models for space-fractional diffusion processes,” Fract. Calculus Appl. Anal. 1, 167–191 (1998).

    MathSciNet  Google Scholar 

  4. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000). https://doi.org/10.1142/3779

    Book  Google Scholar 

  5. A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Fractional diffusion in inhomogeneous media,” J. Phys. A: Math. Gen. 38, L679–L684 (2005). https://doi.org/10.1088/0305-4470/38/42/l03

    Article  MathSciNet  Google Scholar 

  6. F. Mainardi and M. Tomirotti, “Seismic pulse propagation with constant Q and stable probability distributions,” Ann. Geophys. 40, 1311–1328 (1997). https://doi.org/10.4401/ag-3863

    Article  Google Scholar 

  7. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000). https://doi.org/10.1016/s0370-1573(00)00070-3

    Article  MathSciNet  Google Scholar 

  8. I. Podlubny, Fractional Differential Equations (Academic, San Diego, Calif., 1999).

    Google Scholar 

  9. D. K. Durdiev and Z. Z. Nuriddinov, “Determination of a multidimensional kernel in some parabolic integro-differential equation,” Zh. Sib. Fed. Univ., Ser. Mat. Fiz. 14, 117–127 (2021). https://doi.org/10.17516/1997-1397-2021-14-1-117-127

    Article  Google Scholar 

  10. D. K. Durdiev and Z. Z. Zhumayev, “Problem of determining a multidimensional thermal memory in a heat conductivity equation,” Methods Funct. Anal. Topology 25, 219–226 (2019).

    MathSciNet  Google Scholar 

  11. U. D. Durdiev, “Inverse problem of determining an unknown coefficient in the beam vibration equation,” Differ. Equations 58, 36–43 (2022). https://doi.org/10.1134/s0012266122010050

    Article  MathSciNet  Google Scholar 

  12. D. K. Durdiev and Z. Zh. Zhumaev, “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor,” Math. Methods Appl. Sci. 45, 8374–8388 (2022). https://doi.org/10.1002/mma.7133

    Article  MathSciNet  Google Scholar 

  13. D. K. Durdiev and Zh. Zh. Zhumaev, “One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain,” Ukr. Math. J. 73, 1723–1740 (2022). https://doi.org/10.1007/s11253-022-02026-0

    Article  MathSciNet  Google Scholar 

  14. D. K. Durdiev and Zh. Zh. Zhumaev, “Problem of determining the thermal memory of a conducting medium,” Differ. Equations 56, 785–796 (2020). https://doi.org/10.1134/s0012266120060117

    Article  MathSciNet  Google Scholar 

  15. Yu. Luchko, “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation,” Comput. Math. Appl. 59, 1766–1772 (2010). https://doi.org/10.1016/j.camwa.2009.08.015

    Article  MathSciNet  Google Scholar 

  16. K. Sakamoto and M. Yamamoto, “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,” J. Math. Anal. Appl. 382, 426–447 (2011). https://doi.org/10.1016/j.jmaa.2011.04.058

    Article  MathSciNet  Google Scholar 

  17. R. Gorenflo, Y. F. Luchko, and P. P. Zabrejko, “On solvability of linear fractional differential equations in Banach spaces,” Fract. Calc. Appl. Anal. 2, 163–176 (1999).

    MathSciNet  Google Scholar 

  18. Yu. Luchko, “Maximum principle for the generalized time-fractional diffusion equation,” J. Math. Anal. Appl. 351, 218–223 (2009). https://doi.org/10.1016/j.jmaa.2008.10.018

    Article  MathSciNet  Google Scholar 

  19. A. N. Kochubei, “Diffusion of fractional order,” Differ. Equations 26, 485–492 (1990).

    MathSciNet  Google Scholar 

  20. S. D. Eidelman and A. N. Kochubei, “Cauchy problem for fractional diffusion equations,” J. Differ. Equations 199, 211–255 (2004). https://doi.org/10.1016/j.jde.2003.12.002

    Article  MathSciNet  Google Scholar 

  21. S. Zhang, “Existence of solution for a boundary value problem of fractional order,” Acta Math. Sci. 26, 220–228 (2006). https://doi.org/10.1016/s0252-9602(06)60044-1

    Article  MathSciNet  Google Scholar 

  22. X. Xiong, Q. Zhou, and Y. C. Hon, “An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis and regularization,” J. Math. Anal. Appl. 393, 185–199 (2012). https://doi.org/10.1016/j.jmaa.2012.03.013

    Article  MathSciNet  Google Scholar 

  23. X. Xiong, H. Guo, and X. Liu, “An inverse problem for a fractional diffusion equation,” J. Comput. Appl. Math. 236, 4474–4484 (2012). https://doi.org/10.1016/j.cam.2012.04.019

    Article  MathSciNet  Google Scholar 

  24. A. N. Bondarenko, T. V. Bugueva, and D. S. Ivashchenko, “The method of integral transformations in inverse problems of anomalous diffusion,” Russ. Math. 61, 1–11 (2017). https://doi.org/10.3103/s1066369x1703001x

    Article  MathSciNet  Google Scholar 

  25. D. K. Durdiev, A. A. Rahmonov, and Z. R. Bozorov, “A two-dimensional diffusion coefficient determination problem for the time-fractional equation,” Math. Methods Appl. Sci. 44, 10753–10761 (2021). https://doi.org/10.1002/mma.7442

    Article  MathSciNet  Google Scholar 

  26. Z. A. Subhonova and A. A. Rahmonov, “Problem of determining the time dependent coefficient in the fractional diffusion-wave equation,” Lobachevskii J. Math. 42, 3747–3760 (2021). https://doi.org/10.1134/s1995080222030209

    Article  MathSciNet  Google Scholar 

  27. D. K. Durdiev, “Inverse coefficient problem for the time-fractional diffusion equation,” Eurasian J. Math. Comput. Appl. 9 (1), 44–54 (2021). https://doi.org/10.32523/2306-6172-2021-9-1-44-54

    Article  MathSciNet  Google Scholar 

  28. U. D. Durdiev, “Problem of determining the reaction coefficient in a fractional diffusion equation,” Differ. Equations 57, 1195–1204 (2021). https://doi.org/10.1134/s0012266121090081

    Article  MathSciNet  Google Scholar 

  29. L. Miller and M. Yamamoto, “Coefficient inverse problem for a fractional diffusion equation,” Inverse Probl. 29, 075013 (2013). https://doi.org/10.1088/0266-5611/29/7/075013

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. K. Durdiev or J. J. Jumaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, D.K., Jumaev, J.J. Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain. Russ Math. 67, 1–13 (2023). https://doi.org/10.3103/S1066369X23100043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23100043

Keywords:

Navigation