Skip to main content
Log in

Reconstruction of the Cauchy–Riemann Operator by Complex Integration Operators along Circles

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

One well-known integral condition for a function to be holomorphic is the following classical Morera theorem: if a function \(f:\mathcal{O} \to \mathbb{C}\) is continuous in a domain \(\mathcal{O} \subset \mathbb{C}\) and has zero integrals over all rectifiable contours in \(\mathcal{O}\), then \(f\) is holomorphic in \(\mathcal{O}\). This fact allows for far-reaching generalizations in various directions. In particular, if a continuous function \(f:\mathbb{C} \to \mathbb{C}\) has zero integrals over all circles of fixed radii \({{r}_{1}}\) and \({{r}_{2}}\) in \(\mathbb{C}\) and \({{r}_{1}}{\text{/}}{{r}_{2}}\) is not the ratio of two zeros of the Bessel function \({{J}_{1}}\), then \(f\) is holomorphic on the whole complex plane (entire). One example of the function \(\frac{\partial }{{\partial z}}\left( {{{J}_{0}}\left( {\lambda \left| z \right|} \right)} \right)\) with a suitable parameter \(\lambda \) shows that this condition on \({{r}_{1}}{\text{/}}{{r}_{2}}\) cannot be omitted. In this article, we study the problem of recovering the derivative \(\frac{{\partial f}}{{\partial \bar {z}}}\) from given contour integrals of \(f\). Our main result is Theorem 4, which gives a new formula for finding \(\frac{{\partial f}}{{\partial \bar {z}}}\) in terms of integrals of \(f\) over circles with the above condition. The key step in the proof of Theorem 4 is the expansion of the Dirac delta function in terms of a system of radial distributions supported in \({{\bar {B}}_{r}}\) biorthogonal to some system of spherical functions. A similar approach can be used to invert a number of convolution operators with radial distributions in \(\mathcal{E}{\kern 1pt} '{\kern 1pt} ({{\mathbb{C}}^{n}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. V. Volchkov, Integral Geometry and Convolution Equations (Springer, Dordrecht, 2003). https://doi.org/10.1007/978-94-010-0023-9

    Book  MATH  Google Scholar 

  2. V. V. Volchkov and Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer Monographs in Mathematics (Springer, London, 2009). https://doi.org/10.1007/978-1-84882-533-8

  3. V. V. Volchkov and Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces (Birkhäuser, Basel, 2013). https://doi.org/10.1007/978-3-0348-0572-8

  4. L. Zalcman, “Analyticity and the Pompeiu problem,” Arch. Rat. Mech. Anal. 47, 237–254 (1972). https://doi.org/10.1007/BF00250628

    Article  MathSciNet  MATH  Google Scholar 

  5. J. D. Smith, “Harmonic analysis of scalar and vector fields in Rn,” Math. Proc. Cambridge Philos. Soc. 72, 403–416 (1972). https://doi.org/10.1017/S0305004100047241

    Article  Google Scholar 

  6. J. Delsarte, “Note sur une propriété nouvelle des fonctions harmoniques,” C. R. Acad. Sci. Paris Sér. A–B 246, 1358–1360 (1958).

    MATH  Google Scholar 

  7. C. A. Berenstein and D. C. Struppa, “Complex analysis and convolution equations,” 54, 5–111 (1989). https://doi.org/10.1007/978-3-642-58011-6_1

  8. L. Zalcman, “Offbeat integral geometry,” Am. Math. Mon. 87, 161–175 (1980). https://doi.org/10.1080/00029890.1980.11994985

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Radon, “Über die Bestimmung von Funktionen durch Ihre Integralwerte Längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. 69, 262–277 (1917).

    Google Scholar 

  10. S. D. Casey and D. F. Walnut, “Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms,” SIAM Rev. 36, 537–577 (1994). https://doi.org/10.1137/1036140

    Article  MathSciNet  MATH  Google Scholar 

  11. C. A. Berenstein, B. A. Taylor, and A. Yger, “Sur quelques formules explicites de déconvolution,” J. Opt. 14 (2), 75–82 (1983).

    Article  Google Scholar 

  12. C. A. Berenstein and A. Yger, “Le problème de la déconvolution,” J. Funct. Anal. in Several Complex Variables V, Encyclopaedia of Mathematical Sciences, Vol. 54 (Springer, Berlin, 1989), pp. 1–108.https://doi.org/10.1016/0022-1236(83)90051-4

  13. C. A. Berenstein and A. Yger, “Analytic Bezout identities,” Adv. Appl. Math. 10, 51–74 (1989). https://doi.org/10.1016/0196-8858(89)90003-1

    Article  MathSciNet  MATH  Google Scholar 

  14. V. V. Volchkov, “A definitive version of the local two-radii theorem,” Sb. Math. 186, 783–802 (1995). https://doi.org/10.1070/SM1995v186n06ABEH000043

    Article  MathSciNet  MATH  Google Scholar 

  15. C. A. Berenstein, R. Gay, and A. Yger, “Inversion of the local Pompeiu transform,” J. Anal. Math. 54, 259–287 (1990). https://doi.org/10.1007/BF02796152

    Article  MathSciNet  MATH  Google Scholar 

  16. N. P. Volchkova and Vit. V. Volchkov, “Deconvolution problem for indicators of segments,” Mat. Zametki Sev.-Kavk. Fed. Univ. 26 (3), 1–14 (2019). https://doi.org/10.25587/SVFU.2019.47.12.001

    Article  Google Scholar 

  17. L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Classics in Mathematics (Springer, New York, 1990). https://doi.org/10.1007/978-3-642-61497-2

  18. S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, Vol. 83 (American Mathematical Society, 1984).

  19. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953).

    MATH  Google Scholar 

  20. R. Hielscher and M. Quellmalz, “Reconstructing an function on the sphere from its means along vertical slices,” Inverse Probl. Imaging 10, 711–739 (2016). https://doi.org/10.3934/ipi.2016018

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye. Salman, “Recovering functions defined on the unit sphere by integration on a special family of sub-spheres,” Anal. Math. Phys. 7, 165–185 (2017). https://doi.org/10.1007/s13324-016-0135-7

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Rubin, “Reconstruction of functions on the sphere from their integrals over hyperplane sections,” Anal. Math. Phys. 9, 1627–1664 (2019). https://doi.org/10.1007/s13324-019-00290-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Volchkova or Vit. V. Volchkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkova, N.P., Volchkov, V.V. Reconstruction of the Cauchy–Riemann Operator by Complex Integration Operators along Circles. Russ Math. 67, 16–28 (2023). https://doi.org/10.3103/S1066369X23050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23050109

Keywords:

Navigation