Skip to main content
Log in

Generalized Surface Green’s Functions for an Elastic Half-Space

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract—

Using generalized functions, Green’s functions for homogeneous elastic isotropic half-planes and half-spaces are constructed. Airy and Maxwell stress functions are used to find Green’s functions. One-dimensional and two-dimensional integral Fourier transforms are used to solve the boundary value problems. Taking into account the properties of generalized functions with a point support, singular components of displacement images are distinguished. It is shown that they correspond to the rigid-body displacement. If there are no singular components, then the stresses and di-splacements coincide with the known classical solutions of the Flamant, Boussinesq, and Cerutti problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  2. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 2nd ed. (Cambridge Univ. Press, 1906).

    MATH  Google Scholar 

  3. B. E. Pobedrya and D. V. Georgievskii, Lecture Notes on Theory of Elasticity (Editorial URSS, Moscow, 1999).

    Google Scholar 

  4. V. V. Novozhilov, Theory of Elasticity (Sudpromgiz, Leningrad, 1958).

    Google Scholar 

  5. K. L. Johnson, Contact Mechanics (Cambridge Univ. Press, 1985).

    Book  MATH  Google Scholar 

  6. Yu. A. Amenzade, Theory of Elasticity (Vysshaya Shkola, Moscow, 1976).

    Google Scholar 

  7. Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979).

    Google Scholar 

  8. W. Novacki, Teorija sprezystošci (Pan. Wyd. Naukowe, Warsaw, 1970).

    Google Scholar 

  9. A. G. Gorshkov, E. I. Starovoitov, and D. V. Tarlakovskii, Theory of Elasticity and Plasticity (Fizmatlit, Moscow, 2002).

    Google Scholar 

  10. H. G. Hahn, Elastizitätstheorie: Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme, Leitfäden der angewandten Mathematik und Mechanik, Vol. 62 (Vieweg+Teubner Verlag, Wiesbaden, 1985). https://doi.org/10.1007/978-3-663-09894-2

  11. V. G. Rekach, Guide to Solving the Problems in the Theory of Elasticity (Vysshaya Shkola, Moscow, 1966).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshits, Theory of Elasticity (Nauka, Moscow, 1965; Elsevier, 1986).

  13. G. E. Mase, Theory and Problems of Continuum Mechanics, Schaum’s Outline Series (McGraw-Hill, New York, 1970).

    Google Scholar 

  14. A. I. Lurie, “Theory of Elasticity,” (1970; Springer, Berlin, 2005). https://doi.org/10.1007/978-3-540-26455-2

  15. W. Kecs and P. P. Teodorescu, Introducere in Teoria Distributiilor cu Aplicatii in Tehnică (Editura Tehnică, Bucharest, 1975).

    Google Scholar 

  16. N. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 1: Generalized Functions and Actions upon Them (Fizmatlit, Moscow, 1958).

  17. N. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 2: Spaces of Main and Generalized Functions (Fizmatlit, Moscow, 1958).

  18. N. Gel’fand and G. Shilov, Generalized Functions, Vol. 3: Some Questions of the Theory and Differential Equations (Fizmatlit, Moscow, 1958).

  19. N. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 4: Some Applications of Harmonic Analysis: Equipped Hilbert Spaces (Fizmatlit, Moscow, 1961).

  20. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981).

    Google Scholar 

  21. V. S. Vladimirov, Methods of the Theory of Generalized Functions (CRC Press, London, 2002). https://doi.org/10.1201/9781482288162

    Book  MATH  Google Scholar 

  22. A. S. Okonechnikov, D. V. Tarlakovskii, and G. V. Fedotenkov, Generalized Function in Mechanics of Deformable Solids: Foundations of the Theory: Textbook (MAI-Print, Moscow, 2019).

    Google Scholar 

  23. M. S. Agranovich, Generalized Functions (MTsNMO, Moscow, 2008).

  24. N. A. Lokteva, D. V. Tarlakovskii, and G. V. Fedotenkov, Problems of Theory of Elasticity (MAI-Print, Moscow, 2011).

    Google Scholar 

  25. A. G. Gorshkov, A. L. Medvedskii, L. N. Rabinskii, and D. V. Tarlakovskii, Waves in Solids: Textbook for Universities (Fizmatlit, Moscow, 2004).

    Google Scholar 

  26. A. S. Okonechnikov, D. V. Tarlakovskii, and G. V. Fedotenkov, Generalized Functions in Mechanics of Deformable Solids: Integral Transforms and Differential Equations (MAI-Print, Moscow, 2019).

    Google Scholar 

  27. D. V. Tarlakovskii and G. V. Fedotenkov, General Relations and Variational Principles of the Mathematical Theory of Elasticity (Mosk. Aviats. Inst., Moscow, 2009).

    Google Scholar 

  28. A. V. Vestyak, V. A. Vestyak, and D. Tarlakovskii, Alebra and Analytical Geometry, Part 1 (Mosk. Aviats. Inst., Moscow, 2002).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 20-19-00217, https://rscf.ru/project/20-19-00217/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zemskov or D. V. Tarlakovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskov, A.V., Tarlakovskii, D.V. Generalized Surface Green’s Functions for an Elastic Half-Space. Russ Math. 67, 22–30 (2023). https://doi.org/10.3103/S1066369X23040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23040084

Keywords:

Navigation