Skip to main content
Log in

On the Stability of a Locally One-Dimensional Difference Scheme for a First-Order Linear Differential-Algebraic System of Index (1, 0)

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

This paper considers an initial-boundary value problem for a linear multidimensional first-order differential-algebraic system of index (1, 0). For its numerical solution, a four-point three-layer locally one-dimensional difference scheme is used. It is proven that, under certain conditions on the steps of the difference grid, such a scheme is stable in terms of the initial-boundary conditions and in the right-hand side. The results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. M. Kovenya, Finite-Difference Methods for Solving Multidimensional Problems: Lecture Notes (Novosibirsk. Gos. Univ., Novosibirsk, 2004).

    Google Scholar 

  2. V. M. Rushchinskii, “Spatial linear and nonlinear models of boiler-generators,” Vopr. Identifikatsii Modelirovaniya, 8–15 (1968).

  3. S. L. Sobolev, “On a new problem of mathematical physics,” Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1), 3–50 (1954).

    Google Scholar 

  4. S. S. Kutateladze and V. E. Nakoryakov, Heat and Mass Transfer and Waves in Gas and Liquid Systems (Nauka, Novosibirsk, 1984).

    Google Scholar 

  5. G. V. Demidenko and S. V. Uspenskii, Equations and Systems Not Resolved for Higher-Order Derivative (Nauchnaya Kniga, Novosibirsk, 1998).

    Google Scholar 

  6. S. L. Campbell and W. Marszalek, “The index of an infinite dimensional implicit system,” Math. Comput. Modell. Dyn. Syst. 5, 18–42 (1999). https://doi.org/10.1076/mcmd.5.1.18.3625

    Article  MathSciNet  MATH  Google Scholar 

  7. M. S. Soto and C. Tischendorf, “Numerical analysis of DAEs from coupled circuit and semiconductor simulation,” Appl. Numer. Math. 53, 471–488 (2005). https://doi.org/10.1016/j.apnum.2004.08.009

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Lucht, “Partial differential-algebraic systems of second order with symmetric convection,” Appl. Numer. Math. 53, 357–371 (2005). https://doi.org/10.1016/j.apnum.2004.08.016

    Article  MathSciNet  MATH  Google Scholar 

  9. S. V. Svinina and A. K. Svinin, “Stability of a difference scheme for a quasi-linear partial differential algebraic system of equations of index (k, 0),” Comput. Math. Math. Phys. 59, 513–528 (2019). https://doi.org/10.1134/S0965542519040158

    Article  MathSciNet  MATH  Google Scholar 

  10. S. V. Svinina and A. K. Svinin, “Existence of solution to some mixed problems for linear differential-algebraic systems of partial differential equations,” Russ. Math. 63, 64–74 (2019). https://doi.org/10.3103/S1066369X19040078

    Article  MathSciNet  MATH  Google Scholar 

  11. S. V. Svinina, “On a quasi-linear partial differential algebraic system of equations,” On a Quasi-Linear Partial Differ. Algebraic Syst. Equations 59, 1791–1805 (2019). https://doi.org/10.1134/S0965542519110125

    Article  MathSciNet  MATH  Google Scholar 

  12. S. V. Gaidomak, “Stability of an implicit difference scheme for a linear differential-algebraic system of partial differential equations,” Comput. Math. Math. Phys. 50, 673–683 (2010). https://doi.org/10.1134/S0965542510040093

    Article  MathSciNet  MATH  Google Scholar 

  13. S. V. Gaidomak, “Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations,” Comput. Math. Math. Phys. 49, 1521–1534 (2009). https://doi.org/10.1134/S0965542509090073

    Article  MathSciNet  MATH  Google Scholar 

  14. P. N. Vabishchevich, Additive Operator-Difference Schemes (Splitting Schemes) (Krasand, Moscow, 2013).

    Book  MATH  Google Scholar 

  15. J. J. Douglas and H. H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables,” Trans. Am. Math. Soc. 82, 421–439 (1956). https://doi.org/10.1090/s0002-9947-1956-0084194-4

    Article  MathSciNet  MATH  Google Scholar 

  16. S. V. Svinina, “On the stability of spline collocation difference scheme for linear multidimensional differential-algebraic systems,” Russ. Math. 66, 56–65 (2022). https://doi.org/10.3103/S1066369X22080096

    Article  MATH  Google Scholar 

  17. A. A. Samarskii, “On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region,” USSR Comput. Math. Math. Phys. 2, 894–926 (1963). https://doi.org/10.1016/0041-5553(63)90504-4

    Article  MATH  Google Scholar 

  18. S. V. Gaidomak, “The canonical structure of a pencil of degenerate matrix functions,” Russ. Math. 56, 19–28 (2012). https://doi.org/10.3103/S1066369X1202003X

    Article  MathSciNet  MATH  Google Scholar 

  19. S. V. Gaidomak, “On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations,” Comput. Math. Math. Phys. 53, 1272–1291 (2013). https://doi.org/10.1134/S0965542513090066

    Article  MathSciNet  MATH  Google Scholar 

  20. S. V. Gaidomak and V. F. Chistyakov, “On the non Cauchy–Kowalewska type systems of index (1, k),” Vychisl. Tekh. 10 (2), 45–59 (2005).

    MATH  Google Scholar 

  21. Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions (Nauka, Moscow, 1980).

    MATH  Google Scholar 

  22. P. Lancaster, Theory of Matrices (Academic, New York, 1972).

    Google Scholar 

Download references

Funding

This work was carried out as part of the basic project “Theory and Methods for Studying Evolutionary Equations and Control Systems with Their Applications,” no. 121041300060-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Svinina.

Ethics declarations

The author declares that she has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svinina, S.V. On the Stability of a Locally One-Dimensional Difference Scheme for a First-Order Linear Differential-Algebraic System of Index (1, 0). Russ Math. 67, 31–43 (2023). https://doi.org/10.3103/S1066369X23040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23040059

Keywords:

Navigation