Skip to main content
Log in

Square Function Characterizations of Real and Ergodic H1 Spaces

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Let \(({{n}_{k}})\) be a lacunary sequence with no nontrivial common divisor and \(f \in {{L}^{1}}(\mathbb{R})\). Define the square function

$$Sf(x) = {{\left( {\sum\limits_{k = 1}^\infty {{{\left| {\frac{1}{{{{n}_{{k + 1}}}}}\int\limits_0^{{{n}_{{k + 1}}}} {f(x - t)dt} - \frac{1}{{{{n}_{k}}}}\int\limits_0^{{{n}_{k}}} {f(x - t)dt} } \right|}}^{2}}} \right)}^{{1/2}}}.$$

We show that there exist constants\(A\) and \(B\) such that

$${{\left\| f \right\|}_{{{{L}^{1}}(\mathbb{R})}}} \leqslant A{{\left\| {Sf} \right\|}_{{{{L}^{1}}(\mathbb{R})}}}\quad {\text{and}}\quad {{\left\| f \right\|}_{{{{H}^{1}}(\mathbb{R})}}} \leqslant B{{\left\| {Sf} \right\|}_{{{{L}^{1}}(\mathbb{R})}}},$$

for all \(f \in {{L}^{1}}(\mathbb{R})\). Let \((X,\mathcal{B},\mu ,\tau )\) be an ergodic, measure preserving dynamical system with \((X,\mathcal{B},\mu )\) a totally \(\sigma \)-finite measure space. Let us consider the usual ergodic averages

$${{A}_{n}}f(x) = \frac{1}{n}\sum\limits_{i = 0}^{n - 1} \,f({{\tau }^{i}}x),$$

and define the ergodic square function

$$\mathcal{S}f(x) = {{\left( {\sum\limits_{k = 1}^\infty {{{\left| {{{A}_{{{{n}_{{k + 1}}}}}}f(x) - {{A}_{{{{n}_{k}}}}}f(x)} \right|}}^{2}}} \right)}^{{1/2}}}.$$

We also show that

$${{\left\| f \right\|}_{{{{L}^{1}}(X)}}} \leqslant A{{\left\| {\mathcal{S}f} \right\|}_{{{{L}^{1}}(X)}}}\;\;{\text{and}}\;\;{{\left\| f \right\|}_{{{{H}^{1}}(X)}}} \leqslant B{{\left\| {\mathcal{S}f} \right\|}_{{{{L}^{1}}(X)}}},$$

for all \(f \in {{L}^{1}}(X)\), where \({{H}^{1}}(X)\) denotes the ergodic Hardy space. Combining these results with the author’s earlier results we also conclude that the square function \(Sf\) characterizes the real Hardy space \({{H}^{1}}(\mathbb{R})\), and the ergodic square function \(\mathcal{S}f\) characterizes the ergodic Hardy space \({{H}^{1}}(X)\) when the sequence \(({{n}_{k}})\) is lacunary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. L. Burkholder, “Martingale transforms,” Ann. Math. Stat. 37, 1494–1504 (1966). https://doi.org/10.1214/aoms/1177699141

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Davis, “On the intergrability of the martingale square function,” Isr. J. Math. 8, 187–190 (1970). https://doi.org/10.1007/bf02771313

    Article  MATH  Google Scholar 

  3. R. L. Jones, I. V. Ostrovskii, and J. M. Rosenblatt, “Square functions in ergodic theory,” Ergodic Theory Dyn. Syst. 16, 267–305 (1996). https://doi.org/10.1017/S0143385700008816

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Demir, “Hp spaces and inequalities in ergodic theory,” PhD Thesis (Univ. Illinois at Urbana-Champaign, 1999).

  5. R. Caballero and A. De La Torre, “An atomic theory of ergodic H p spaces,” Stud. Math. 82 (1), 39–59 (1985). https://doi.org/10.4064/sm-82-1-39-59

    Article  MATH  Google Scholar 

  6. K. E. Petersen, Ergodic Theory (Cambridge Univ. Press, Cambridge, 1983).

    Book  MATH  Google Scholar 

  7. R. L. Jones and J. M. Rosenblatt, “Reverse inequalities,” J. Fourier Anal. Appl. 6, 325–341 (2000). https://doi.org/10.1007/bf02511159

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Demir, “A generalization of Calderón transfer principle,” J. Comput. Math. Sci. 9, 325–329 (2018). https://doi.org/10.29055/jcms/761

    Article  Google Scholar 

  9. S. Demir, “Integrability of ergodic square function,” Universal J. Math. Math. Sci. 11 (2), 77–89 (2018). https://doi.org/10.17654/um011020077

    Article  MATH  Google Scholar 

  10. D. Ornstein, “A remark on the Birkhoff ergodic theorem,” Illinois J. Math. 15, 77–79 (1971). https://doi.org/10.1215/ijm/1256052821

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakin Demir.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakin Demir Square Function Characterizations of Real and Ergodic H1 Spaces. Russ Math. 67, 11–21 (2023). https://doi.org/10.3103/S1066369X23040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23040023

Keywords:

Navigation