Skip to main content
Log in

Oscillation Inequalities on Real and Ergodic H1 Spaces

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Let \(({{x}_{n}})\) be a sequence and \(\rho \geqslant 1\). For fixed sequences \({{n}_{1}} < {{n}_{2}} < {{n}_{3}} < \ldots \), and \(M\), define the oscillation operator

$${{\mathcal{O}}_{\rho }}({{x}_{n}}) = {{\left( {\sum\limits_{k = 1}^\infty {\kern 1pt} \mathop {\sup }\limits_{\substack{ {{n}_{k}} \leqslant m < {{n}_{{k + 1}}} \\ m \in M } } {{{\left| {{{x}_{m}} - {{x}_{{{{n}_{k}}}}}} \right|}}^{\rho }}} \right)}^{{1/\rho }}}.$$

Let \((X,\mathcal{B},\mu ,\tau )\) be a dynamical system with \((X,\mathcal{B},\mu )\) a probability space and \(\tau \) a measurable, invertible, measure preserving point transformation from \(X\) to itself.

Suppose that the sequences \(({{n}_{k}})\) and \(M\) are lacunary. Then we prove the following results for \(\rho \geqslant 2\):

1. Define \({{\phi }_{n}}(x) = \frac{1}{n}{{\chi }_{{[0,n]}}}(x)\) on \(\mathbb{R}\). Then there exists a constant \(C > 0\) such that

$${{\left\| {{{\mathcal{O}}_{\rho }}({{\phi }_{n}} * f)} \right\|}_{{{{L}^{1}}(\mathbb{R})}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(\mathbb{R})}}}$$

for all \(f \in {{H}^{1}}(\mathbb{R})\).

2. Let

$${{A}_{n}}f(x) = \frac{1}{n}\sum\limits_{k = 1}^n \,f({{\tau }^{k}}x)$$

be the usual ergodic averages in ergodic theory. Then

$${{\left\| {{{\mathcal{O}}_{\rho }}({{A}_{n}}f)} \right\|}_{{{{L}^{1}}(X)}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(X)}}}$$

for all \(f \in {{H}^{1}}(X)\).

3. If \({{[f(x)\log (x)]}^{ + }}\) is integrable, then \({{\mathcal{O}}_{\rho }}({{A}_{n}}f)\) is integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. F. Gaposhkin, “A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals,” Math. USSR-Sb. 33, 1–17 (1977). https://doi.org/10.1070/sm1977v033n01abeh002407

    Article  Google Scholar 

  2. V. F. Gaposhkin, “Individual ergodic theorem for normal operators in L 2,” Funct. Anal. Its Appl. 15, 14–18 (1981). https://doi.org/10.1007/bf01082374

    Article  MathSciNet  MATH  Google Scholar 

  3. R. L. Jones, R. Kaufman, J. M. Rosenblatt, and M. Wierdl, “Oscillation in ergodic theory,” Ergodic Theory Dyn. Syst. 18, 889–935 (1998). https://doi.org/10.1017/s0143385798108349

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Demir, “A generalization of Calderón transfer principle,” J. Comput. Math. Sci. 9, 325–329 (2018). https://doi.org/10.29055/jcms/761

    Article  Google Scholar 

  5. R. Caballero and A. de la Torre, “An atomic theory of ergodic H p spaces,” Stud. Math. 82, 39–59 (1985). https://doi.org/10.4064/sm-82-1-39-59

    Article  MATH  Google Scholar 

  6. D. Ornstein, “A remark on the Birkhoff ergodic theorem,” Illinois J. Math. 15, 77–79 (1971). https://doi.org/10.1215/ijm/1256052821

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Demir, “H p spaces and inequalities in ergodic theory,” PhD Thesis (Univ. of Illinois at Urbana-Champaign, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakin Demir.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

The text was submitted by the author in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakin Demir Oscillation Inequalities on Real and Ergodic H1 Spaces. Russ Math. 67, 42–52 (2023). https://doi.org/10.3103/S1066369X23030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23030039

Keywords:

Navigation