Skip to main content
Log in

Existence Condition for the Eigenvalue of a Three-Particle Schrödinger Operator on a Lattice

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

A three-particle discrete Schrödinger operator \({{H}_{{\mu ,\gamma }}}({\mathbf{K}})\), \({\mathbf{K}} \in {{\mathbb{T}}^{3}}\) associated with a system of three particles (two fermions with the mass 1 and one more particle with the mass \(m = {\text{1/}}\gamma < 1\)) interacting through pairwise repulsive zero-range potentials \(\mu > 0\) on the three-dimensional lattice \({{\mathbb{Z}}^{3}}\) is considered. The operator \({{H}_{{\mu ,\gamma }}}({\boldsymbol{\pi }})\), \({\boldsymbol{\pi }} = (\pi ,\pi ,\pi )\) is proved to have no eigenvalues for \(\gamma \in (1,{{\gamma }_{0}})\) (\({{\gamma }_{0}} \approx 4.7655\)) and have the unique eigenvalue with multiplicity three for \(\gamma > {{\gamma }_{0}}\), which lies to the right of the essential spectrum for sufficiently big \(\mu \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. C. Mattis, “The few-body problem on lattice,” Rev. Mod. Phys. 58, 361–379 (1986). https://doi.org/10.1103/RevModPhys.58.361

    Article  MathSciNet  Google Scholar 

  2. A. I. Mogilner, “Hamiltonians of solid state physics at few-particle discrete Schrödinger operators: Problems and results,” Adv. Sov. Math. 5, 139–194 (1991).

    MATH  Google Scholar 

  3. V. A. Malyshev and R. A. Minlos, Linear Infinite-Particle Operators, Translations of Mathematical Monographs, Vol. 143 (Am. Math. Soc., Providence, R.I., 1995).

  4. R. A. Minlos and A. I. Mogilner, “Some problems concerning spectra of lattice models,” in Schrödinger Operators, Standard and Nonstandard, Proc. Conf., Dubna, 1989, Ed. by P. Exner and P. Seba (World Scientific, Singapore, 1989), pp. 243–257.

  5. S. N. Lakaev and Sh. S. Lakaev, “The existence of bound states in a system of three particles in an optical lattice,” J. Phys. A: Math. Theor. 50, 335202 (2017). https://doi.org/10.1088/1751-8121/aa7db8

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system,” Phys. Lett. B 33, 563–564 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  Google Scholar 

  7. S. Albeverio, R. Hoegh-Krohn, and T. T. Wu, “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior,” Phys. Lett. A 83, 105–109 (1981). https://doi.org/10.1016/0375-9601(81)90507-7

    Article  MathSciNet  Google Scholar 

  8. R. D. Amado and J. V. Noble, “On Efimov’s effect: A new pathology of three-particle systems,” Phys. Lett. B 35, 25–27 (1971). https://doi.org/10.1016/0370-2693(71)90429-1

    Article  Google Scholar 

  9. S. P. Merkur’ev and L. D. Fadeev, Quantum Scattering Theory for Few-Particle Systems (Nauka, Moscow, 1985).

    Google Scholar 

  10. D. R. Yafaev, “On the theory of the discrete spectrum of the three-particle Schrödinger operator,” Math. USSR Sb. 23, 535–559 (1974). https://doi.org/10.1070/SM1974v023n04ABEH001730

    Article  MATH  Google Scholar 

  11. Yu. N. Ovchinnikov and I. M. Sigal, “Number of bound states of three-body systems and Efimov’s effect,” Ann. Phys. 123, 274–295 (1979). https://doi.org/10.1016/0003-4916(79)90339-7

    Article  MathSciNet  Google Scholar 

  12. A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics,” Commun. Math. Phys. 156, 101–126 (1993). https://doi.org/10.1007/BF02096734

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect,” in Spectral and Scattering Theory and Applications, Ed. by K. Yajima, Advanced Studies in Pure Mathematics, Vol. 23 (Tokyo Inst. of Technology, Tokyo, 1994), pp. 311–322. https://doi.org/10.2969/aspm/02310311

  14. S. N. Lakaev, “On Efimov’s effect in a system of three identical quantum particles,” Funct. Anal. Its Appl. 27, 166–175 (1993). https://doi.org/10.1007/BF01087534

    Article  MathSciNet  MATH  Google Scholar 

  15. D. K. Gridnev, “Three resonating fermions in flatland: Proof of the super Efimov effect and the exact discrete spectrum asymptotics,” J. Phys. A: Math. Theor. 47, 505204 (2014). https://doi.org/10.1088/1751-8113/47/50/505204

    Article  MathSciNet  MATH  Google Scholar 

  16. R. A. Minlos, “A system of three quantum particles with point-like interactions,” Russ. Math. Surv. 69, 539–564 (2014). https://doi.org/10.1070/RM2014v069n03ABEH004900

    Article  MATH  Google Scholar 

  17. S. Becker, A. Michelangeli, and A. Ottolini, “Spectral analysis of the 2 + 1 fermionic trimer with contact interactions,” Math. Phys., Anal. Geom. 21, 35–42 (2018). https://doi.org/10.1007/s11040-018-9294-0

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Basti and A. Teta, “Efimov effect for a three-particle system with two identical fermions,” Ann. Henri Poincare 18, 3975–4003 (2017). https://doi.org/10.1007/s00023-017-0608-8

    Article  MathSciNet  MATH  Google Scholar 

  19. S. N. Lakaev, G. Dell’Antonio, and A. M. Khalkhuzhaev, “Existence of an isolated band of a system of three particles in an optical lattice,” J. Phys. A: Math. Theor. 49, 145204 (2016). https://doi.org/10.1088/1751-8113/49/14/145204

    Article  MathSciNet  MATH  Google Scholar 

  20. G. F. Dell’Antonio, Z. I. Muminov, and Y. M. Shermatova, “On the number of eigenvalues of a model operator related to a system of three particles on lattices,” J. Phys. A: Math. Theor. 44, 315302 (2011). https://doi.org/10.1088/1751-8113/44/31/315302

    Article  MathSciNet  MATH  Google Scholar 

  21. S. N. Lakaev and A. M. Khalkhuzhaev, “Spectrum of the two-particle Schrödinger operator on a lattice,” Theor. Math. Phys. 155, 754–765 (2008). https://doi.org/10.1007/s11232-008-0064-1

    Article  MATH  Google Scholar 

  22. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics,” Ann. Henri Poincare 5, 743–772 (2004). https://doi.org/10.1007/s00023-004-0181-9

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators (Academic, New York, 1978).

  24. A. M. Khalkhuzhaev, “The essential spectrum of the three-particle discrete operator corresponding to a system of three fermions on a latice,” Russ. Math. 61, 67–78 (2017). https://doi.org/10.3103/S1066369X17090080

    Article  MathSciNet  MATH  Google Scholar 

  25. A. A. Pankov, Lecture Notes on Schrödinger Equations (Nova Publ., New York, 2007).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. I. Abdullaev, A. M. Khalkhuzhaev or I. A. Khujamiyorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Talacheva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, J.I., Khalkhuzhaev, A.M. & Khujamiyorov, I.A. Existence Condition for the Eigenvalue of a Three-Particle Schrödinger Operator on a Lattice. Russ Math. 67, 1–22 (2023). https://doi.org/10.3103/S1066369X23020019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23020019

Keywords:

Navigation