Skip to main content
Log in

The Markoff Theory and the Commutator Subgroup SL(2, Z)'

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The commutator subgroup SL(2, Z)' plays a particular role in the Markoff theory since every Markoff number is 1/3 of the trace of same elements of SL(2, Z)'. The latter is a free group with two generators. We give an exhaustive description of the possible pairs of generators of SL(2, Z)', including important new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. Markoff, “Sur les formes quadratiques binaires indéfinies,” Math. Ann. 15, 381–406 (1879). https://doi.org/10.1007/BF02086269

    Article  MATH  Google Scholar 

  2. A. Markoff, “Sur les formes quadratiques binaires indéfinies (séecond mémoire),” Math. Ann. 17, 379–399 (1879). https://doi.org/10.1007/BF01446234

    Article  Google Scholar 

  3. P. Bachmann, Die Arithmetik der quadratischen Formen (B. G. Teubner, Leipzig, 1923).

    MATH  Google Scholar 

  4. L. E. Dickson, Studies in hte Theory of Numbers (Chicago Univ. Press, Chicago, 1930).

    Google Scholar 

  5. T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, AMS Math. Surveys Monographs, Vol. 30 (AMS, Providence, R.I., 1989).

  6. S. Perrine, La théorie de Markoff et ses développement (Tessier & Ashpool, 2002).

    MATH  Google Scholar 

  7. M. Aigner, Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings (Springer, Cham, 2013). https://doi.org/10.1007/978-3-319-00888-2

    Book  MATH  Google Scholar 

  8. Ch. Reutenauer, From Christoffel Words to Markoff Numbers (Oxford Univ. Press, Oxford, 2018). https://doi.org/10.1093/oso/9780198827542.001.0001

    Book  MATH  Google Scholar 

  9. P. Schmutz Schaller, Markoff Theory and Hyperbolic Torus Groups, in preparation.

  10. H. Cohn, “Approach to Markoff’s minimal forms through modular functions,” Ann. Math. 61 (1), 1–12 (1955). https://doi.org/10.2307/1969618

    Article  MathSciNet  MATH  Google Scholar 

  11. D. S. Gorshkov, “Geometry of Lobachevskii in connection with certain questions of arithmetic,” J. Sov. Math. 16, 788–820 (1981). https://doi.org/10.1007/BF01213890

    Article  MATH  Google Scholar 

  12. R. Fricke, “Ueber die Theorie der automorphen Modulgruppen,” Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1896, 91–101 (1896).

    Google Scholar 

  13. J. Nielsen, Collected Mathematical Papers (Birkhäuser, Boston, 1986).

    MATH  Google Scholar 

  14. S. Perrine, “L’interprétation matricielle de la théorie de Markoff classique,” Int. J. Math. Math. Sci. 32, 854739 (2002). https://doi.org/10.1155/S0161171202012875

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Newman, “The structure of some subgroups of the modular group,” Illinois J. Math. 6, 480–487 (1962). https://doi.org/10.1215/ijm/1255632506

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schmutz Schaller.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul Schmutz Schaller The Markoff Theory and the Commutator Subgroup SL(2, Z)'. Russ Math. 66, 91–101 (2022). https://doi.org/10.3103/S1066369X22120106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22120106

Keywords:

Navigation