Skip to main content
Log in

Reducibility by Means of Almost Polynomial Functions

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

A variant of m-reducibility is introduced using almost polynomial functions, and the resulting partially ordered set \({{\mathcal{M}}_{\mathbb{P}}}\) of the corresponding degrees of undecidability is analyzed. It is proved that the set \({{\mathcal{M}}_{\mathbb{P}}}\) has at least a countable number of minimal elements but no maximal elements. \({{\mathcal{M}}_{\mathbb{P}}}\) is neither an upper nor a lower semilattice. Each element of \({{\mathcal{M}}_{\mathbb{P}}}\), other than the smallest one, can be included in a continuum antichain. We construct a continuum family of pairwise isomorphic initial segments of \({{\mathcal{M}}_{\mathbb{P}}}\), having a countable width and height and intersecting only by the smallest element of the set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York, 1967).

    MATH  Google Scholar 

  2. A. N. Degtev, Recursive-Countable Setse and Reducilibities of Tabular Kind (Fizmatlit, Moscow, 1998).

    Google Scholar 

  3. P. Odifreddi, “Strong reducibilities,” Bull. Am. Math. Soc. 4, 37–86 (1981).https://doi.org/10.1090/S0273-0979-1981-14863-1

    Article  MathSciNet  MATH  Google Scholar 

  4. S. A. Cook, “The complexity of theorem-proving procedures,” in STOC ’71: Proc. Third Annu. ACM Symp. on Theory of Computing, Shaker Heights, Ohio, 1971 (Association for Computing Machinery, New York, 1971), pp. 151–158. https://doi.org/10.1145/800157.805047

  5. R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations, Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohliner, The IBM Research Symposia Series (Springer, Boston, 1972), pp. 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

    Book  Google Scholar 

  6. G. Reina, “Degrees of finite-state transformations,” Kibern. Sb. Nov. Ser., No. 14, 95–106 (1977).

  7. H. G. Gordon, “Complete degrees of finite-state transformability,” Inf. Control 32, 169–187 (1976). https://doi.org/10.1016/S0019-9958(76)90217-5

    Article  MathSciNet  MATH  Google Scholar 

  8. V. R. Bairasheva, “Structural properties of automaton transformations,” Sov. Math. 32, 54–64 (1988).

    MathSciNet  MATH  Google Scholar 

  9. S. S. Marchenkov, “Finite initial segments of the upper semilattice of finite-automaton degrees,” Diskretnaya Mat. 1, 96–103 (1989).

    MathSciNet  MATH  Google Scholar 

  10. V. D. Solov’ev, “The sructures of information in infinite sequences,” Discrete Math. Appl. 6, 285–294 (1996).

    MathSciNet  Google Scholar 

  11. S. S. Marchenkov, “Boolean reducibility,” Discrete Math. Appl. 13, 331–342 (2003). https://doi.org/10.1515/156939203322556018

    Article  MathSciNet  MATH  Google Scholar 

  12. S. S. Marchenkov and S. A. Matveev, “Boolean degrees determined by the classes of linear functions and conjunctions,” in Mathematical Problems of Cybernetics, No. 14 (Fizmatlit, Moscow, 2005), pp. 35–48.

    Google Scholar 

  13. S. S. Marchenkov, “On the structure of partially ordered sets of Boolean degrees,” Discrete Math. 16, 87–97 (2006). https://doi.org/10.1515/156939206776241237

    Article  MathSciNet  MATH  Google Scholar 

  14. S. S. Marchenkov, “Complete and incomplete Boolean degrees,” Probl. Inf. Transm. 46, 346–352 (2010). https://doi.org/10.1134/S0032946010040058

    Article  MathSciNet  MATH  Google Scholar 

  15. S. S. Marchenkov, “On maximal and minimal elements of partially ordered sets of Boolean degrees,” J. Appl. Ind. Math. 7, 549–556 (2013). https://doi.org/10.1134/S1990478913040091

    Article  MathSciNet  MATH  Google Scholar 

  16. S. S. Marchenkov, Boolean Reducibility and Boolean Degrees (Maks Press, Moscow, 2020).

    Book  Google Scholar 

  17. S. Jain, F. Stephan, and J. Teutsch, “Closed left-r.e. sets,” Computability 6, 1–21 (2017). https://doi.org/10.3233/COM-160054

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to S.A. Matveev for helpful discussions and to a reviewer for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Marchenkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Arutyunyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkov, S.S. Reducibility by Means of Almost Polynomial Functions. Russ Math. 66, 62–70 (2022). https://doi.org/10.3103/S1066369X2212009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X2212009X

Keywords:

Navigation