Skip to main content
Log in

Theorems of the Phragmén–Lindelöf Type for Biharmonic Functions

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Theorems of the Phragmén–Lindelöf type for biharmonic functions, which is obtained using Carleman type formulas, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. A. Evgrafov and I. A. Chegis, “Generalization of the Phragmén–Lindelöf theorem on analytic functions to harmonic functions in space,” Dokl. Akad. Nauk SSSR 134 (2), 259–262 (1960).

    MATH  Google Scholar 

  2. I. A. Chegis, “A Phragmén–Lindelöf type theorem for functions harmonic in a rectangular cylinder,” Dokl. Akad. Nauk SSSR 136 (3), 556–559 (1961).

    MathSciNet  MATH  Google Scholar 

  3. I. S. Arshon and M. A. Evgrafov, “On the growth of functions harmonic in a cylinder and bounded on its surface together with the normal derivative,” Dokl. Akad. Nauk SSSR 142 (4), 762–765 (1962).

    MathSciNet  MATH  Google Scholar 

  4. I. S. Arshon and M. A. Evgrafov, “An example of a function harmonic in the whole space and bounded outside a circular cylinder,” Dokl. Akad. Nauk SSSR 143 (1), 9–10 (1962).

    MathSciNet  MATH  Google Scholar 

  5. I. S. Arshon and M. A. Evgrafov, “On the growth of harmonic functions of three variables,” Dokl. Akad. Nauk SSSR 147 (4), 755–757 (1962).

    MathSciNet  MATH  Google Scholar 

  6. A. F. Leon’tev, “Theorems of Phragmén–Lindelöf type for harmonic functions in a cylinder,” Izv. Akad. Nauk SSSR Ser. Mat. 27 (3), 661–676 (1963).

    MathSciNet  Google Scholar 

  7. Sh. Yarmukhamedov, “The Cauchy problem for a polyharmonic equation,” Dokl. Akad. Nauk 388 (2), 162–165 (2003).

    MathSciNet  MATH  Google Scholar 

  8. Z. R. Ashurova, N. Yu. Jurayeva, and U. Yu. Jurayeva, “On some properties of the Yarmukhamedov kernel,” Int. J. Innovative Res. Sci. Eng. Technol. 10 (6), 7338–7341 (2021).

    Google Scholar 

  9. N. Yu. Jurayeva, Z. R. Ashurova, and U. Yu. Jurayeva, “Growing polyharmonic functions and the Cauchy problem,” J. Crit. Rev. 7 (7), 371–378 (2020). https://doi.org/10.31838/jcr.07.07.62

    Article  Google Scholar 

  10. Z. R. Ashurova, N. Yu. Jurayeva, and U. Yu. Jurayeva, “Task Cauchy and Carleman function,” Academicia: Int. Multidiscip. Res. J. 10 (5), 1784–1789 (2020). https://doi.org/10.5958/2249-7137.2020.00369.9

    Article  Google Scholar 

  11. G. M. Goluzin and V. I. Krylov, “The generalized Carleman formula and its application to the analytic continuation of functions,” Mat. Sb. 40 (2), 144–149 (1933).

    Google Scholar 

  12. A. N. Tikhonov, “On the stability of inverse problems,” Dokl. Akad. Nauk SSSR 39 (5), 195–198 (1943).

    MathSciNet  Google Scholar 

  13. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  14. Sh. Yarmukhamedov, “A Green formula in an infinite domain and its application,” Dokl. Akad. Nauk SSSR 285 (2), 305–308 (1985).

    MathSciNet  MATH  Google Scholar 

  15. Z. R. Ashurova, “Phragmén–Lindelöf type theorems for harmonic functions of several variables,” Akad. Nauk Uzb. SSR 5, 6–8 (1990).

    MathSciNet  MATH  Google Scholar 

  16. N. Yu. Jurayeva, U. Yu. Jurayeva, and U. M. Saidov, “A Carleman function for polyharmonic functions for some domains lying in m-dimensional even Euclidean space,” Uzbek Math. J., No. 3, 92–97 (2011).

  17. A. B. Khasanov and F. R. Tursunov, “On Cauchy problem for Laplace equation,” Ufa Math. J. 11 (4), 91–107 (2019). https://doi.org/10.13108/2019-11-4-91

    Article  MathSciNet  MATH  Google Scholar 

  18. A. B. Khasanov and F. R. Tursunov, “On the Cauchy problem for the three-dimensional Laplace equation,” Russ. Math. 65 (2), 49–64 (2021). https://doi.org/10.3103/S1066369X21020055

    Article  MathSciNet  MATH  Google Scholar 

  19. I. N. Vekua, “Complex representation of solutions of elliptic differential equations and its applications to boundary value problems,” Tr. Tbilis. Mat. Inst. 7, 161–173 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Yu. Jurayeva.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by M. Talacheva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurayeva, U.Y. Theorems of the Phragmén–Lindelöf Type for Biharmonic Functions. Russ Math. 66, 33–55 (2022). https://doi.org/10.3103/S1066369X22100097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22100097

Keywords:

Navigation