Skip to main content
Log in

Realization Functionals and Description of a Modulus of Smoothness in Variable Exponent Lebesgue Spaces

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In variable exponent Lebesgue spaces, the equivalence between the modulus of smoothness given by one-sided Steklov means and realization functionals that use Zygmund–Riesz and Euler means is established. A class of functions equivalent to generalized moduli of smoothness of the order r\(\mathbb{N}\) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. DeVore and G. G. Lorentz, Constructive Approximation (Springer, Berlin, 1993).

    Book  MATH  Google Scholar 

  2. Z. Ditzian, V. H. Hristov, and K. G. Ivanov, “Moduli of smoothness and K-functionals in L p, 0 < p < 1,” Constr. Approx. 11 (1), 67–83 (1995). https://doi.org/10.1007/BF01294339

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Akgün, “Realization and characterization of modulus of smoothness in weighted Lebesgue spaces,” Algebra Anal. 26 (5), 64–87 (2014);

    MathSciNet  Google Scholar 

  4. St. Petersburg Math. J. 26 (5), 741–756 (2015). https://doi.org/10.1090/spmj/1356

  5. A. F. Timan, The Theory of Approximation of Functions of a Real Variable (Fizmatgiz, Moscow, 1960; Pergamon Press, Oxford, 1963).

  6. S. Z. Jafarov, “Derivatives of a polynomial of the best approximation and modulus of smoothness in generalized Lebesgue spaces with variable exponent,” Demonstr. Math. 50 (1), 245–251 (2017). https://doi.org/10.1515/dema-2017-0023

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Testici, “On derivative of trigonometric polynomials and characterizations of modulus of smoothness in weighted Leebesgue space with variable exponent,” Period. Math. Hungar. 80 (1), 59–73 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Tikhonov, “On moduli of smoothness of fractional order,” Real Anal. Exchange 30 (2), 507–518 (2004/2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Orlicz, “Über conjugierte Exponentenfolgen,” Studia Math. 3, 200–211 (1931).

    Article  MATH  Google Scholar 

  10. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034 (Springer, Berlin, 1983). https://doi.org/10.1007/BFb0072210

  11. A. N. Kolmogorov, “Zur normierbarkeit eines allgemeinen topologischen linearen räumen,” Studia Math. 5 (1), 29–38 (1934).

    Article  MATH  Google Scholar 

  12. I. I. Sharapudinov, “Topology of the space \({{\mathcal{L}}^{{p(t)}}}\)([0, 1]),” Math. Notes Acad. Sci. SSSR (4), 796–806 (1979). https://doi.org/10.1007/BF01159546

  13. O. Kováčik and J. Rákosník, “On spaces L p(x) and W k, p(x),” Czechoslovak Math. J. 41 (4), 592–618 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Diening, P. Harjulehto, P. Hästö, and M. Rúžička. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol. 2017 (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-18363-8

  15. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Springer, Basel, 2013).

    Book  MATH  Google Scholar 

  16. I. I. Sharapudinov, “Uniform boundedness in L p (p = p(x)) of some families of convolution operators,” Math. Notes 59 (2), 205–212 (1996). https://doi.org/10.1007/BF02310962

    Article  MathSciNet  MATH  Google Scholar 

  17. D. M. Israfilov, V. Kokilashvili, S. Samko, “Approximation in weighted Lebesgue and Smirnov spaces with variable exponent,” Proc. A. Razmadze Math. Inst. 143, 45–55 (2007).

  18. A. Guven and D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue space L p(x),” J. Math. Inequal. 4 (2), 285–299 (2010). https://doi.org/10.7153/jmi-04-25

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent,” Ukr. Math. J. 63 (1), 1–26 (2011). https://doi.org/10.1007/s11253-011-0485-0

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Akgün and V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces,” Banach J. Math. Anal. 5 (1), 70–82 (2011). https://doi.org/10.15352/bjma/1313362981

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Akgün and V. Kokilashvili, “Some notes on trigonometric approximation of (α, ψ)-differentiable functions in weighted variable exponent Lebesgue spaces,” Proc. A. Razmadze Math. Inst. 163, 15–23 (2013).

  22. I. I. Sharapudinov, “Approximation of functions in \(L_{{2\pi }}^{{p(x)}}\) by trigonometric polynomials,” Izv. Math. 77 (2), 407–434 (2013). https://doi.org/10.1070/IM2013v077n02ABEH00264110.1070/IM2013v077n02ABEH002641

    Article  MathSciNet  MATH  Google Scholar 

  23. S. S. Volosivets, “Approximation of functions and their conjugates in variable Lebesgue spaces,” Sb. Math. 208 (1), 44–59 (2017). https://doi.org/10.1070/SM8636

    Article  MathSciNet  MATH  Google Scholar 

  24. N. K. Bari, Trigonometric Series (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  25. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, “The boundedness of classical operators on variable L p spaces,” Ann. Acad. Sci. Fenn. 31, 239–264 (2006).

    MathSciNet  MATH  Google Scholar 

  26. I. I. Sharapudinov, “Approximation of smooth functions in \(L_{{2\pi }}^{{p(x)}}\) by Vallee-Poussin means,” Izv. Saratov. Univ. Ser. Mat. Mekh. Inf. 13 (1 (1)), 45–49 (2013). https://doi.org/10.18500/1816-9791-2013-13-1-1-45-49

    Article  MATH  Google Scholar 

  27. S. S. Volosivets and A. A. Tyuleneva, “Approximation of functions and their conjugates in L p and uniform metric by Euler means,” Demonstr. Math. 51 (1), 141–150 (2018). https://doi.org/10.1515/dema-2018-0013

    Article  MathSciNet  MATH  Google Scholar 

  28. S. S. Volosivets, “Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means,” Probl. Anal. Issues Anal. 10 (28) (1), 87–100 (2021). https://doi.org/10.15393/j3.art.2021.8950

  29. M. F. Timan, “Best approximations of a function and linear methods of summation of Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat. 29 (3), 587–604 (1965).

    Google Scholar 

  30. R. M. Trigub, “The constructive characteristics of certain classes of functions,” Izv. Akad. Nauk SSSR, Ser. Mat. 29 (3), 615–630 (1965).

    Google Scholar 

  31. S. B. Stechkin, “On absolute convergence of Fourier series. II,” Izv. Akad. Nauk SSSR, Ser. Mat. 19 (4), 221–246 (1955).

    Google Scholar 

Download references

Funding

This study is supported by the Ministry of Education of the Russian Federation within fulfilling state task, project no. FSRR-2020-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Volosivets.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Talacheva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosivets, S.S. Realization Functionals and Description of a Modulus of Smoothness in Variable Exponent Lebesgue Spaces. Russ Math. 66, 8–19 (2022). https://doi.org/10.3103/S1066369X22060081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22060081

Keywords:

Navigation