Skip to main content
Log in

Approximation of the Lebesgue Constant of the Fourier Operator by a Logarithmic Function

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The Lebesgue constant Ln of the classical Fourier operator is uniformly approximated by a family of logarithmic functions which depend on two parameters. In this paper, we analyze the case when the corresponding residual term has a nonmonotonous behavior. The obtained data on the approximation of the Lebesgue constants by the mentioned family of functions strengthen the well-known results which correspond to the cases of a strict decrease and increase in the residual term. Various modifications of the logarithmic approximation of Ln are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Fejér, “Sur les singularités de la série de Fourier des fonctions continues,” Ann. Sci Ec. Norm. Super. Ser. 3. 28, 63–103 (1911). https://doi.org/10.24033/asens.634

    Article  MATH  Google Scholar 

  2. G. Szego, “Über die Lebesgueschen Konstanten bei den Fourierchen Reihen,” Math. Z. 9 (1–2), 163–166 (1921). https://doi.org/10.1007/BF01378345

    Article  MathSciNet  MATH  Google Scholar 

  3. G. H. Hardy, “Note on Lebesgue’s constants in the theory of Fourier series,” J. London Math. Soc. s1–17 (1), 4–13 (1942). https://doi.org/10.1112/jlms/s1-17.1.4

  4. L. Fejér, “Lebesguesche Konstanten und divergente Fourierreihen,” J. Reine Angew. Math. 138, 22–53 (1910). https://doi.org/10.1515/crll.1910.138.22

    Article  MathSciNet  MATH  Google Scholar 

  5. G. H. Watson, “The constant of Landau and Lebesgue,” Quart. J. Math. Oxford Ser. 1 (2), 310–318 (1930).

    Article  MATH  Google Scholar 

  6. D. Zhao, “Some sharp estimates of the constants of Landau and Lebesgue,” J. Math. Anal. Appl. 349 (1), 68–73 (2009). https://doi.org/10.1016/j.jmaa.2008.08.035

    Article  MathSciNet  MATH  Google Scholar 

  7. C.-P. Chen and J. Choi, “Inequalities and asymptotic expansions for the constants of Landau and Lebesgue,” Appl. Math. Comput. 248, 610–624 (2014). https://doi.org/10.1016/j.amc.2014.10.017

    Article  MathSciNet  MATH  Google Scholar 

  8. C.-P. Chen and J. Choi, “Unified treatment of several asymptotic expansions concerning some mathematical constant,” Appl. Math. Comput. 305, 348–363 (2017). https://doi.org/10.1016/j.amc.2017.02.001

    Article  MathSciNet  MATH  Google Scholar 

  9. P. V. Galkin, “Estimate for Lebesgue constants,” Proc. Steklov Inst. Math. 109, 1–4 (1971).

    MathSciNet  Google Scholar 

  10. V. V. Zhuk and G. I. Natanson, Trigonometric Fourier Series and Elements of Approximation Theory (Izd. Leningr. Gos. Univ., Leningrad, 1983) [in Russian].

    MATH  Google Scholar 

  11. I. A. Shakirov, “About an unimprovable two-sided estimate of the Lebesgue constant of the classical Fourier operator,” Vestn. Kazan. Gos. Energ. Univ., No. 2 (34), 7–17 (2017).

  12. I. A. Shakirov, “On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions,” Itogi Nauki Tekh., Ser.: Sovrem. Mat. Rpil. Temat. Obz. 139, 104–113 (2017).

    Google Scholar 

  13. A. L. Lukashov, “Rational interpolation processes on several intervals,” Izv. Saratov.Univ. Ser.: Mat. Mekh. Inf. 5 (1), 34–48 (2005).

    Google Scholar 

  14. H. Ehlich, K. Zeller, “Auswertung der Normen von Interpolations operatoren,” Math. Ann. 164, 105–112 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. K. Dzyadyk, Approximation Methods for Solving Differential and Integral Equations (Naukova Dumka, Kiev, 1988) [in Russian].

    MATH  Google Scholar 

  16. I. A. Shakirov, “About the fundamental characteristics of the Lagrange interpolation polynomials family,” Izv. Saratov.Univ. Ser.: Mat. Mekh. Inf. 13 (1 (2)), 99–104 (2013). https://doi.org/10.18500/1816-9791-2013-13-1-2-99-104

    Article  MATH  Google Scholar 

  17. I. A. Shakirov, “Approximation of the Lebesgue constant of a Lagrange polynomial by a logarithmic function with shifted argument,” J. Math. Sci. 252 (3), 445–452 (2021). https://doi.org/10.1007/s10958-020-05172-7

    Article  MATH  Google Scholar 

  18. I. A. Shakirov, “About the optimal replacement of the Lebesque constant Fourier operator by a logarithmic function,” Lobachevskii J. Math. 39 (6), 841–846 (2018). https://doi.org/10.1134/S1995080218060185

    Article  MathSciNet  MATH  Google Scholar 

  19. I. A. Shakirov, “On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions,” J. Math. Sci. 241 (3), 354–363 (2019). https://doi.org/10.1007/s10958-019-04429-0

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shakirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Brief communication presented by S.R. Nasyrov

Translated by A.V. Shishulin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, I.A. Approximation of the Lebesgue Constant of the Fourier Operator by a Logarithmic Function. Russ Math. 66, 70–76 (2022). https://doi.org/10.3103/S1066369X22050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22050073

Keywords:

Navigation