Skip to main content
Log in

Computational Complexity of the Word Problem in Modal and Heyting Algebras with a Small Number of Generators

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider the computational complexity of the word problem for finitely generated Heyting and modal algebras. It is shown that the word problem is PSPACE-complete if only constant modal terms or only 0-generated modal algebras are considered; similar results are obtained for two-variable terms and 2-generated Heyting algebras. It is also shown that, if an equation of positive terms is refuted in a Heyting algebra, it is refuted in a 2-generated Heyting algebra. We also consider the word problem for certain classes of modal and Heyting algebras and obtain results similar to those mentioned above for infinite families of such classes. The results are optimal in the number of generators: reduction in the number of generators leads to polynomial-time decidable word problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Thue, “Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln,” Videnskabsselsk. Skr. I. Mat.-Naturvidensk. KI., 10 (1914).

  2. A. A. Markov, “Impossibility of certain algorithms in the theory of associative systems,” Dokl. Akad. Nauk SSSR 55 (7), 587–590 (1947).

    MathSciNet  Google Scholar 

  3. E. L. Post, “Recursive unsolvability of a problem of Thue,” J. Symbolic Logic 12 (1), 1–11 (1947). https://doi.org/10.2307/2267170

    Article  MathSciNet  MATH  Google Scholar 

  4. S. I. Adian and V. G. Durnev, “Decision problems for groups and semigroups,” Russ. Math. Surv. 55 (2), 207–296 (2000). https://doi.org/10.1070/RM2000v055n02ABEH000267

    Article  Google Scholar 

  5. R. E. Ladner, “The computational complexity of provability in systems of modal propositional logic,” SIAM J. Comput. 6 (3), 467–480 (1977). https://doi.org/10.1137/0206033

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Statman, “Intuitionistic propositional logic is polynomial-space complete,” Theor. Comput. Sci. 9 (1), 67–72 (1979). https://doi.org/10.1016/0304-3975(79)90006-9

    Article  MathSciNet  MATH  Google Scholar 

  7. L. A. Levin, “Universal sequential search problems,” Probl. Inf. Transm. 9 (3), 265–266 (1973).

    Google Scholar 

  8. S. A. Cook, “The complexity of theorem-proving procedures,” in Proc. Third Annual ACM Symposium on Theory of Computing (STOC71), Shaker Heights, Ohio, 1971, pp. 151–158. https://doi.org/10.1145/800157.805047

  9. M. N. Rybakov, “The complexity of the problem of resolving basic and formal logics,” Logicheskie Issled. 10, 158–166 (2003).

  10. M. N. Rybakov, “Complexity of a variable-free fragment of propositional dynamic logic,” Vestn. Tver. Gos. Univ. Ser. Prikl. Mat., No. 2 (5), 5–17 (2007).

  11. A. Chagrov and M. Rybakov, “How many variables does one need to prove PSPACE-hardness of modal logics?,” Adv. Modal Logic 4, 71–82 (2003).

    MathSciNet  MATH  Google Scholar 

  12. S. Demri, P. Schnoebelen, “The complexity of propositional linear temporal logics in simple cases,” Information and Comput. 174, 84–103 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Y. Halpern, “The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic,” Artificial Intelligence 75 (2), 361–372 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Rybakov, “Complexity of finite-variable fragments of EXPTIME-complete logics,” J. Appl. Non-Classical Logics 17 (3), 359–382 (2007). https://doi.org/10.3166/jancl.17.359-382

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Rybakov, “Complexity of intuitionistic propositional logic and its fragments,” J. Appl. Non-Classical Logics 18 (2–3), 267–292 (2008). https://doi.org/10.3166/jancl.18.267-292

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Rybakov and D. Shkatov, “Complexity and expressivity of branching- and alternating-time temporal logics with finitely many variables,” in Theoretical Aspects of ComputingICTAC 2018, Ed. by B. Fischer and T. Uustalu, Lecture Notes in Computer Science, Vol. 11187 (Springer, Cham, 2018), pp. 396–414. https://doi.org/10.1007/978-3-030-02508-3_21

  17. M. Rybakov and D. Shkatov, “Complexity and expressivity of propositional dynamic logics with finitely many variables,” Logic J. IGPL 26 (5), 539–547 (2018). https://doi.org/10.1093/jigpal/jzy014

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Rybakov and D. Shkatov, “Complexity of finite-variable fragments of propositional modal logics of symmetric frames,” Logic J. IGPL 27 (1), 60–68 (2019). https://doi.org/10.1093/jigpal/jzy018

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Rybakov and D. Shkatov, “Complexity of finite-variable fragments of products with K,” J. Logic Comput. 31 (2), 426–443 (2021). https://doi.org/10.1093/logcom/exaa060

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Rybakov, “Complexity of intuitionistic and Visser’s basic and formal logics in finitely many variables,” Adv. Modal Logic 6, 393–411 (2006).

    MathSciNet  MATH  Google Scholar 

  21. E. Spaan, “Complexity of modal logics,” PhD thesis (Univ. van Amsterdam, 1993).

  22. V. Švejdar, “The decision problem of provability logic with only one atom,” Arch. Math. Logic 42 (8), 763–768 (2003). https://doi.org/10.1007/s00153-003-0180-4

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Chagrov and M. Zakharyaschev, Modal Logic (Oxford Univ. Press, Oxford, 1997).

    MATH  Google Scholar 

  24. C. H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1995).

    MATH  Google Scholar 

  25. W. J. Savitch, “Relationships between nondeterministic and deterministic tape complexities,” J. Comput. Syst. Sci. 4 (2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Nishimura, “On formulas of one variable in intuitionistic propositional calculus,” J. Symbolic Logic 25 (4), 327–331 (1960). https://doi.org/10.2307/2963526

    Article  MathSciNet  MATH  Google Scholar 

  27. V. A. Jankov, “The calculus of the weak “law of excluded middle,” Math. USSR-Izv. 2 (5), 997–1004 (1968). https://doi.org/10.1070/IM1968v002n05ABEH000690

    Article  MATH  Google Scholar 

  28. S. I. Mardaev, “Embedding of implicative lattices in superintuitionistic logics,” Algebra Logika 26 (3), 318–357 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Rybakov and D. Shkatov, “Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter,” Stud. Logica 107 (4), 695–717 (2019). https://doi.org/10.1007/s11225-018-9815-7

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Rybakov and D. Shkatov, “Algorithmic properties of first-order modal logics of finite Kripke frames in restricted languages,” J. Logic Comput. 30 (7), 1305–1329 (2020). https://doi.org/10.1093/logcom/exaa041

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Rybakov and D. Shkatov, “Algorithmic properties of first-order superintuitionistic logics of finite Kripke frames in restricted languages,” J. Logic Comput. 31 (2), 494–522 (2021). https://doi.org/10.1093/logcom/exaa091

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by Russian Science Foundation, project no. 21‑18‑00195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rybakov.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, M. Computational Complexity of the Word Problem in Modal and Heyting Algebras with a Small Number of Generators. Russ Math. 66, 33–48 (2022). https://doi.org/10.3103/S1066369X22050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22050061

Keywords:

Navigation