Skip to main content
Log in

Massera Problem for Some Nonautonomous Functional Differential Equations of Neutral Type with Finite Delay

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The work considers the existence of periodic solutions for some nonautonomous nonlinear partial functional differential equations of neutral type with finite delay. It is supposed that the linear part is nondensely defined and satisfies the Acquistapace–Terreni conditions. The delayed part is assumed to be ω-periodic with respect to the first argument. The existence of periodic solutions is studied in the linear case by means of the existence of bounded solutions. In the nonlinear case, a fixed-point theorem for multivalued mapping and some sufficient conditions are given to prove the existence of periodic solutions. An example is given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Zitane and C. Bensouda, “Massera problem for non-autonomous retarded differential equations,” J. Math. Anal. Appl. 402 (2), 453–462 (2013). https://doi.org/10.1016/j.jmaa.2013.01.046

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Zitane, “Periodic solutions for non-autonomous neutral functional differential equations with finite delay,” Acta Math. Vietnam. 42, 533–550 (2017). https://doi.org/10.1007/s40306-017-0208-1

    Article  MathSciNet  MATH  Google Scholar 

  3. J. L. Massera, “The existence of periodic solutions of systems of differential equations,” Duke Math. J. 17 (4), 457–475 (1950). https://doi.org/10.1215/S0012-7094-50-01741-8

    Article  MathSciNet  MATH  Google Scholar 

  4. T. A. Burton, Stability and Periodic Solutions of Ordinary Differential Equations and Functional Differential Equations, Mathematics in Science and Engineering, Vol. 178 (Academic Press, New York, 1985).

  5. S.-N. Chow, “Remarks on one-dimensional delay-differential equations,” J. Math. Anal. Appl. 41 (2), 426–429 (1973). https://doi.org/10.1016/0022-247X(73)90217-5

    Article  MathSciNet  MATH  Google Scholar 

  6. J. R. Haddock, “Liapunov functions and boundedness and global existence of solutions,” Appl. Anal. 2 (4), 321–330 (1972). https://doi.org/10.1080/00036817208839047

    Article  MathSciNet  MATH  Google Scholar 

  7. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monorgaphs, Vol. 25 (Am. Math. Soc., Providence, RI, 1988).

    Google Scholar 

  8. J. H. Liu, “Bounded and periodic solutions of semi-linear evolution equations,” Dyn. Syst. Appl. 4, 341–350 (1995).

    MathSciNet  Google Scholar 

  9. T. Yoshizawa, Stability Theory by Lyapunov’s Second Method (Math. Soc. Japan, Tokyo, 1966).

    MATH  Google Scholar 

  10. T. A. Burton and B. Zhang, “Periodic solutions of abstract differential equations with infinite delay,” J. Differ. Equations 90 (2), 357–396 (1991). https://doi.org/10.1016/0022-0396(91)90153-Z

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Gühring and F. Räbiger, “Asymptotic properties of mild solutions of nonautonomous evolutions equations with applications to retarded differential equations,” Abstr. Appl. Anal. 4 (3), 169–194 (1999). https://doi.org/10.1155/S1085337599000214

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Hino and S. Murakami, “Periodic solutions of a linear Volterra system,” in Differential Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 118 (Dekker, New York, 1987), pp. 319–326.

  13. Y. Hino, T. Naito, N. V. Minh, and J. S. Shin. Almost periodic solutions of differential equations in Banach spaces, Stability and Control: Theory, Methods and Applications, Vol. 15 (Taylor and Francis, London, 2002).

  14. J. S. Shin and T. Naito, “Semi-Fredholm operators and periodic solutions for linear functional differential equations,” J. Differ. Equations 153 (2), 407–441 (1999). https://doi.org/10.1006/jdeq.1998.3547

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Zeidler. Nonlinear Functional Analysis and its Applications. I: Fixed Point Theorems (Springer, New York, 1993).

    MATH  Google Scholar 

  16. M. Es-saiydy and M. Zitane, “Weighted Stepanov-like pseudo almost periodicity on time scales and applications,” Differ. Equations Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00543-7

    Book  MATH  Google Scholar 

  17. Y. Li, F. Cong, Z. Li, and W. Liu, “Periodic solutions for evolutions equations,” Nonlinear Anal.: Theory, Methods Appl. 36 (3), 275–293 (1999). https://doi.org/10.1016/S0362-546X(97)00626-3

    Article  Google Scholar 

  18. J. H. Liu, “Bounded and periodic solutions of differential equations in Banach space,” J. Appl. Math. Comput. 65 (1–3), 141–150 (1994). https://doi.org/10.1016/0096-3003(94)90171-6

    Article  MathSciNet  MATH  Google Scholar 

  19. J. H. Liu, “Bounded and periodic solutions of finite delay evolutions equations,” Nonlinear Anal.: Theory, Methods Appl. 34 (1), 101–111 (1998). https://doi.org/10.1016/S0362-546X(97)00606-8

    Article  Google Scholar 

  20. J. Wu and H. Xia, “Self-sustained oscillations in a ring array of coupled lossless transmission lines,” J. Differ. Equat. 124 (1), 247–278 (1996), https://doi.org/10.1006/jdeq.1996.0009

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Amann, Linear and Quasilinear Parabolic Problems (Birkhäuser, Basel, 1995). https://doi.org/10.1007/978-3-0348-9221-6.

  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44 (Springer, New York, 1983). https://doi.org/10.1007/978-1-4612-5561-1

  23. P. Acquistapace, F. Flandoli, and B. Terreni, “Initial boundary value problems and optimal control for nonautonomous parabolic systems,” SIAM J. Control Optim. 29 (1), 89–118 (1991). https://doi.org/10.1137/0329005

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Acquistapace and B. Terreni, “A unified approach to abstract linear nonautonomous parabolic equations,” Rend. Semin. Mat. Univ. Padova 78, 47–107 (1987).

    MathSciNet  MATH  Google Scholar 

  25. P. Acquistapace, “Evolution operators and strong solutions of abstract linear parabolic equations,” Differ. Integr. Equations 1 (4), 433–457 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Yagi, “Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups, II,” Funkcial. Ekvac. 33, 139–150 (1990).

    MathSciNet  MATH  Google Scholar 

  27. A. Yagi, “Abstract quasilinear evolution equations of parabolic type in Banach spaces,” Boll. Unione Mat. Ital. B 5 (7), 341–368 (1991).

    MathSciNet  MATH  Google Scholar 

  28. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194 (Springer, New York, 2000). https://doi.org/10.1007/b97696

  29. W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629 (Springer, Berlin, 1978). https://doi.org/10.1007/BFb0067780

  30. A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Vol. 377 (Springer, Berlin, 1974). https://doi.org/10.1007/BFb0070324

  31. D. Henry, Geometry Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840 (Springer, Berlin, 1981).

  32. G. Da Prato and E. Sinestrari, “Differential operators with non dense domain,” Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2), 285–344 (1987).

    MATH  Google Scholar 

  33. W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-Parameter Semigroup of Positive Operators, Ed. by R. Nagel, Lecture Notes in Mathematics, Vol. 1184 (Springer, Berlin, 1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Es-saiydy, I. Oumadane or M. Zitane.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-saiydy, M., Oumadane, I. & Zitane, M. Massera Problem for Some Nonautonomous Functional Differential Equations of Neutral Type with Finite Delay. Russ Math. 66, 49–59 (2022). https://doi.org/10.3103/S1066369X22050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22050036

Keywords:

Navigation