Skip to main content
Log in

Asymptotic Density and Computability

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We prove that a set is bi-immune if and only if its images under computable permutations are not generically computable or effectively densely computable sets. An example of a coarsely computable bi-immune set is constructed. It is also proved that for any set there is a permutation from the same Turing degree such that its image under this permutation is an effectively densely computable set. Upper densities of weakly 1-generic sets are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Novikov P.S. "On the algorithmic unsolvability of the word problem in group theory", Trudy Mat. Inst. Steklov 44, 3-143 (1955).

    Google Scholar 

  2. Boone W.W. "The world problem", Ann. Math. 70 (2), 207-265 (1959).

    Article  MathSciNet  Google Scholar 

  3. Markov A.A. "Insolubility of the problem of homeomorphy", Dokl. Akad. Nauk SSSR 121 (2), 218-220 (1958).

    MathSciNet  MATH  Google Scholar 

  4. Matiyasevich Yu.V. "The Diophantineness of enumerable sets", Dokl. Akad. Nauk SSSR 191 (2), 279-282 (1970).

    MathSciNet  Google Scholar 

  5. Cook S.A. "The complexity of theorem-proving procedures", Proc. Third Annual ACM Symposium on Theory of Comput., 151-158 (1971).

  6. Levin L.A. "Universal Sequential Search Problems", Problems Inform. Transmission 9 (3), 265-266 (1973).

    Google Scholar 

  7. Karp R.M. "Reducibility among Combinatorial Problems", in: Complexity of Computer Computations, 85-103 (Plenum Press, New York, 1972).

    Chapter  Google Scholar 

  8. Levin L. "Average case complete problems", SIAM J. Comput. (15), 285-286 (1986).

  9. Spielman D.A., Teng S. "Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time", J. ACM 51 (3), 385-463 (2004).

    Article  MathSciNet  Google Scholar 

  10. Erdös P. "On the asymptotic density of the sum of two sequences one of which forms a basis for the integers, II.", Trav. Inst. Math. Tbilissi 3, 217-223 (1938).

    Google Scholar 

  11. Erdös P. "On the asymptotic density of the sum of two sequences", Ann. Math. 43 (1), 65-68 (1942).

    Article  MathSciNet  Google Scholar 

  12. Gromov M. "Hyperbolic groups", in: Essays in Group Theory, MSRI ser. 8, ed. by Gertsen S.M., 75-263 (Springer-Verlag, Berlin, 1987).

    Chapter  Google Scholar 

  13. Ol'shanskii A.Yu. "Almost every group is hyperbolic", Internat. J. Algebra Comput. 2, 1-17 (1992).

    Article  MathSciNet  Google Scholar 

  14. Champetier C. "Petite simplification dans les groupes hyperboliques", Ann. Fac. Sci. Toulouse Math. 3 (2), 161-221 (1994).

    Article  MathSciNet  Google Scholar 

  15. Kapovich I., Myasnikov A., Schupp P., Shpilrain V. "Generic-case complexity, decision problems in group theory and random walks", J. Algebra 264, 665-694 (2003).

    Article  MathSciNet  Google Scholar 

  16. Jockusch C.G., Schupp P.E. "Generic computability, Turing degrees, and asymptotic density", J. London Math. Soc. 85 (2), 472-490 (2012).

    Article  MathSciNet  Google Scholar 

  17. Downey R.G., Jockusch C.G., Schupp P.E. "Asymptotic density and computably enumerable sets", J. Math. Logic 13 (2), 1-43 (2013).

    Article  MathSciNet  Google Scholar 

  18. Igusa G. "Nonexistence of minimal pairs for generic computability", J. Symbolic Logic 78 (2), 511-522 (2013).

    Article  MathSciNet  Google Scholar 

  19. Bienvenu L., Day A., Hölzl R. "From bi-immunity to absolute undecidability", J. Symbolic Logic 17 (4), 1218-1228 (2013).

    Article  MathSciNet  Google Scholar 

  20. Igusa G. "The generic degrees of density-1 sets and a characterization of the hyper-arithmetic reals", J. Symbolic Logic 80 (4), 1290-1314 (2015).

    Article  MathSciNet  Google Scholar 

  21. Downey R.G., Jockusch C.G., McNicholl T.H., Schupp P.E. "Asymptotic density and the Ershov Hierarchy", Math. Log. Quarterly 61 (3), 189-195 (2015).

    Article  MathSciNet  Google Scholar 

  22. Astor E. "Asymptotic density, immunity, and randomness", Computability 4 (2), 141-158 (2015).

    Article  MathSciNet  Google Scholar 

  23. Hirschfeldt D.R., Jockusch C.G., McNicholl T.H., Schupp P.E. "Asymptotic density and the coarse computability bound", Computability 5 (1), 13-27 (2016).

    Article  MathSciNet  Google Scholar 

  24. Andrews U., Cai M., Diamondstone D., Jockusch C.G., Lempp S. "Asymptotic density, computable traceability, and 1-randomness", Fundamenta Math. 234 (1), 41-53 (2016).

    MathSciNet  MATH  Google Scholar 

  25. Dzhafarov D.D., Igusa G. "Notions of robust information coding", Computability 6 (2), 105-124 (2017).

    Article  MathSciNet  Google Scholar 

  26. Hirschfeldt D.R., Jockusch C.G., Kuyper R., Schupp P.E. "Coarse reducibility and algorithmic randomness", J. Symbolic Logic 81 (3), 1028-1046 (2016).

    Article  MathSciNet  Google Scholar 

  27. Cholak P., Igusa G. "Density-1 bounding and quasiminimality in the generic degrees", J. Symbolic Logic 82 (3), 931-957 (2017).

    Article  MathSciNet  Google Scholar 

  28. Astor E., Hirschfeldt D.R., Jockusch C.G. "Dense computability, upper cones and minimal pairs", Computability 8 (2), 155-177 (2019).

    Article  MathSciNet  Google Scholar 

  29. Harrison-Trainor M. "The Gamma questions for many-one degrees", Ann. Pure and Appl. Logic 168 (7), 1396-1405 (2017).

    Article  MathSciNet  Google Scholar 

  30. Monin B. "An answer to the Gamma question", Proc. 33rd Annual IEEE Symposium on LICS, LICS 2018, 730-738 (2018).

  31. Monin B., Nies A. "A unifying approach to the Gamma question", Proc. 30th Annual ACM/IEEE Symposium on LICS, LICS 2015, 585-596 (2015).

  32. Jockusch C.G., Schupp P.E. "Asymptotic density and the theory of computability : A partial survey", in: Computability and Complexity, Lect. Notes in Computer Sci., ed. by Day A., Fellows M., Greenberg N., Khoussainov B., Melnikov A., Rosamond F., 501-520 (Springer, 2017).

  33. Hirschfeldt D.R. "A minimal pair in the generic degrees", J. Symbolic Logic 85, 531-537 (2020).

    Article  MathSciNet  Google Scholar 

  34. Soare R.I. Recursively enumerable sets and Degrees (Springer-Verlag, Berlin, 1987).

    Book  Google Scholar 

  35. Ershov Yu.L. "On a hierarchy of sets, I", Algebra and Logic 7 (1), 24-43 (1968).

    Article  MathSciNet  Google Scholar 

  36. Ershov Yu.L. "On a hierarchy of sets, II", Algebra and Logic 7 (4), 212-232 (1968).

    Article  MathSciNet  Google Scholar 

  37. Ershov Yu.L. "On a hierarchy of sets, III", Algebra and Logic 9 (1), 20-31 (1970).

    Article  MathSciNet  Google Scholar 

  38. Myasnikov A., Rybalov A. "Generic complexity of undecidable problems", J. Symbolic Logic 73, 656-673 (2008).

    Article  MathSciNet  Google Scholar 

  39. Kurtz S.A. "Notions of weak genericity", J. Symbolic Logic 48, 764-770 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation (project no. 18-11-00028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Batyrshin.

Additional information

Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 10, pp. 3–14.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batyrshin, I.I. Asymptotic Density and Computability. Russ Math. 65, 1–9 (2021). https://doi.org/10.3103/S1066369X21100017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X21100017

Keywords

Navigation