Skip to main content
Log in

Exact Solutions for Steady Convective Layered Flows with a Spatial Acceleration

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study non-one-dimensional convective layered flows of a viscous incompressible fluid with a spatial acceleration. We perform the simulation on the base of thermal convection equations in the Boussinesq approximation. We seek for solutions to these equations in a generalized class of exact solutions, where all components of the velocity vector, the pressure, and the temperature represent complete linear forms of two Cartesian coordinates with nonlinear (with respect to to the third Cartesian coordinate) coefficients. We prove that the system of correlations that describe layered flows can be reduced to an overdetermined system of ordinary differential equations. We state and prove two theorems that justify the existence (under a special algebraic condition) and uniqueness of the solution to the resulting overdetermined system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gershuni G.Z., Zhukhovitskii E.M. Convective stability of incompressible fluids. Israel Program for Scientific Translations (Keter Publishing House, Jerusalem, 1976).

    Google Scholar 

  2. Landau L.D., Lifshitz E.M. Fluid Mechanics, Vol. 6, 2nd edition, Course of Theoretical Physics S (Butterworth-Heinemann, 1987).

  3. Burmasheva N.V., Prosviryakov E.Yu. "A Large-Scale Layered Stationary Convection of a Incompressible Viscous Fluid under the Action of Shear Stresses at the Upper Boundary. Velocity Field Investigation", J. Samara State Tech. Univ., Ser. Phys. Math. Sci. 21 (1), 180-196 (2017).

    MATH  Google Scholar 

  4. Burmasheva N.V., Prosviryakov E.Yu. "A Large-Scale Layered Stationary Convection of a Incompressible Viscous Fluid under the Action of Shear Stresses at the Upper Boundary. Temperature and Pressure Field Investigation", J. Samara State Tech. Univ., Ser. Phys. Math. Sci. 21 (4), 736-751 (2017).

    MATH  Google Scholar 

  5. Prosviryakov E.Yu. "Non-Helical Exact Solutions to the Euler Equations for Swirling Axisymmetric Fluid Flows", J. Samara State Tech. Univ., Ser. Phys. Math. Sci. 23 (4), 764-770 (2019).

    MATH  Google Scholar 

  6. Burmasheva N.V., Prosviryakov E.Yu. "Thermocapillary Convection of a Vertically Swirled Fluid", Theoretical Foundations of Chemical Engineering 54 (1), 230-239 (2020).

    Article  Google Scholar 

  7. Pukhnachev V.V. "Hierarchy of Models in the Theory of Convection", J. Math. Sci. (N. Y.) 123 (6), 4607-4620 (2004).

    Article  MathSciNet  Google Scholar 

  8. Hillebrandt W., Müller E., Springel V. "Numerical Fluid Dynamics in Astrophysics", in: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 100, 409-420 (Springer, Berlin–Heidelberg, 2009).

    Chapter  Google Scholar 

  9. Wölbing R., Baschung B. "Three-Dimensional Numerical Fluid Flow Simulation of the Interior and Transitional Ballistics Process", in: Proceedings of 31 International Symposium on Ballistics, Hyderabad, India, November 4–8, 2019, ed. by Saraswat V.K. (The Aeronautical Society of India (Hyderabad Branch), The International Ballistics Society, Hyderabad, 2019).

    Google Scholar 

  10. Childs E. "The Sonification of Numerical Fluid Flow Simulations", in: Proceedings of the 7th International Conference on Auditory Display (ICAD2001), Espoo, Finland, July 29–August 1, 2001, ed. by Hiipakka J., Zacharov N., Takala T., ICAD01-44-ICAD01-49 (International Community for Auditory Display, Espoo, 2001).

    Google Scholar 

  11. Severin T., Brück T., Weuster-Botz D. "Validated Numerical Fluid Simulation of a Thin-Layer Cascade Photobioreactor in OpenFOAM", Engineer. in Life Sci. 19 (2), 97-103 (2019).

    Article  Google Scholar 

  12. Abe H., Kawamura H., Matsuo Yu. "Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow with Respect to the Reynolds Number Dependence", Trans. of the ASME 123, 382-393 (2001).

    Google Scholar 

  13. Wang X., Wache P., Navidbakhsh M., Lucius M., Stoltz J.F. "Three-Dimensional Numerical Simulation of Blood Flow through a Modeled Aneurysm", Rus. J. of Biomech. 1 (1999).

  14. Joseph D.D. Stability of Fluid Motions (Springer-Verlag, Berlin–Heidelberg–New York, 1976).

    Book  Google Scholar 

  15. Monin, A.S. Theoretical Geophysical Fluid Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  16. Pedlosky J. Geophysical Hydrodynamics (Mir, Moscow, 1984) [in Russian].

    Google Scholar 

  17. Reinhart W., Häusler K., Schaller P., Erhart S., Stetter M., Dual J., Sayir M. "Rheological Properties of Blood as Assessed with a Newly Designed Oscillating Viscometer", Clinic. Hemorheol. and Microcircul. 18, 59-65 (1998).

    Google Scholar 

  18. Skadsem H., Saasen A. "Concentric Cylinder Viscometer Flows of Herschel–Bulkley Fluid", Appl. Rheol. 29, 173-181 (2019).

    Article  Google Scholar 

  19. Scherson D.A., Tolmachev Yu., Wang Zh., Wang J., Palencsar A. "Extensions of the Koutecky–Levich Equation to Channel Electrodes", Electrochem. and Solid State Lett. 11 (2) (2007).

  20. Kanzaki Ya., Tokuda K., Bruckenstein S. "Dissociation Rates of Weak Acids Using Sinusoidal Hydrodynamic Modulated Rotating Disk Electrode Employing Koutecky–Levich Equation", J. of the Electrochem. Soc. 161 (12), H770-H779 (2014).

    Article  Google Scholar 

  21. Treimer S., Tang A., Johnson D.C. "A Consideration of the Application of Koutecky–Levich Plots in the Diagnoses of Charge–Transfer Mechanisms at Rotated Disk Electrodes", Electroanalysis 14 (3), 165-171 (2002).

    Article  Google Scholar 

  22. Miranda D., Knook M., Paalvast F., Rossi A., Hop W., Oei F., van Bommel J., Gommers D. "Experimental Validation of Frequent Used Echocardiographic Right Ventricular Impedance Parameters", Minerva Anestesiologica 80 (11), 1169-1177 (2014).

    Google Scholar 

  23. Lin C.C. "Note on a Class of Exact Solutions in Magneto-Hydrodynamics", Arch. for Rational Mech. and Anal. 1, 391-395 (1958).

    Article  MathSciNet  Google Scholar 

  24. Frolovskaya O.A., Pukhnachev V.V. "Analysis of the Models of Motion of Aqueous Solutions of Polymers on the Basis of Their Exact Solutions", Polymers 10 (6), 684-1-684-13 (2018).

    Article  Google Scholar 

  25. Desale B., Sharma V. "Exact Solutions Superimposed with Nonlinear Plane Waves", Int. J. of Different. Equat. 2016, 1846341-1-1846341-7 (2016).

    MathSciNet  MATH  Google Scholar 

  26. Burmasheva N.V., Prosviryakov E.Yu. "Exact Solution of Navier–Stokes Equations Describing Spatially Inhomogeneous Flows of a Rotating Fluid", Trudy Instituta Matematiki i Mekhaniki URO RAN 26 (2), 79-87.

  27. Burmasheva N.V., Prosviryakov E.Yu. "A Class of Exact Solutions for Two-Dimensional Equations of Geophysical Hydrodynamics with Two Coriolis Parameters", Bulletin of Irkutsk State Univ., Ser. Matem. 32, 33-48 (2020).

    Article  MathSciNet  Google Scholar 

  28. Aristov S.N., Prosviryakov E.Yu. "Large-Scale Flows of Viscous Incompressible Vortical Fluid", Russian Aeronautics 58 (4), 413-418 (2020).

    Article  Google Scholar 

  29. Aristov S.N., Prosviryakov E.Yu. "Inhomogeneous Couette Flow", Nelin. Dinam. 10 (2), 177-182 (2014).

    Article  Google Scholar 

  30. Zubarev N.M., Prosviryakov E.Yu. "Exact Solutions for the Layered Three-Dimensional Nonstationary Isobaric Flows of a Viscous Incompressible Fluid", J. Applied Mechanics and Technical Physics 60 (6), 65-71 (2019).

    Article  Google Scholar 

  31. Varsakelis Ch., Papalexandris M. "Existence of Solutions to a Continuum Model for Hydrostatics of Fluid-Saturated Granular Materials", Appl. Math. Lett. 35, 77-81 (2014).

    Article  MathSciNet  Google Scholar 

  32. Berker R. Sur Quelques cas dТIntegration des Equations du Movement dТun Fluide Visqueux Incompressible (A. Taffin–Lefort, Paris–Lille, 1936).

    MATH  Google Scholar 

  33. Shmyglevskii Yu.D. "On Isobaric Planar Flows of a Viscous Incompressible Liquid", Zhurn. Vychisl. Matem. i Matem. Fiziki 25 (12), 1895-1898 (1985).

    MathSciNet  Google Scholar 

  34. Privalova V.V., Prosviryakov E.Yu. "Nonlinear Isobaric Flow of a Viscous Incompressible Fluid in a Thin Layer with Permeable Boundaries", Vychisl. Mekh. Sploshnykh Sred 12 (2), 230-242 (2019).

    Google Scholar 

  35. Troncoso J. "Isobaric Heat Capacity of Ionic Liquids in Aqueous Solutions. A review", J. Chem. Eng. Data 64 (11), 4611-4618 (2019).

    Article  Google Scholar 

  36. Gorshkov A., Prosviryakov E.Yu. "Isobaric Vortex Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition", AIP Conf. Proc. 2053, 040030-1-040030-5.

  37. Privalova V.V., Prosviryakov E.Yu. "An Inhomogeneous Couette-Type Flow with a Perfect Slip Condition at the Lower Boundary of an Infinite Fluid Layer", AIP Conf. Proc. 2176, 030012-1-030012-4 (2019).

    Google Scholar 

  38. Sidorov A.F. "Two Classes of Solutions of the Fluid and Gas Mechanics Equations and Their Connection to Traveling Wave Theory", Prikl. Mekhan. i Tekhn. Fiz. 2, 34-40 (1989).

    Google Scholar 

  39. Aristov S.N., Prosviryakov E.Yu. "A New Class of Exact Solutions for Three-Dimensional Thermal Diffusion Equations", Theoretical Foundations of Chemical Engineering 50 (3), 286-293 (2016).

    Article  Google Scholar 

  40. Prosviryakov E.Yu. "New Class of Exact Solutions of Navier–Stokes Equations with Exponential Dependence of Velocity on Two Spatial Coordinates", Theoretical Foundations of Chemical Engineering 53 (1), 107-114 (2019).

    Article  Google Scholar 

  41. Aristov S.N., Prosviryakov E.Yu. "Nonuniform Convective Couette Flow", Fluid Dynamics 51 (5), 581-587 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 19-19-00571).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Burmasheva or E. Yu. Prosviryakov.

Additional information

Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 7, pp. 12–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmasheva, N.V., Prosviryakov, E.Y. Exact Solutions for Steady Convective Layered Flows with a Spatial Acceleration. Russ Math. 65, 8–16 (2021). https://doi.org/10.3103/S1066369X21070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X21070021

Keywords

Navigation