Skip to main content
Log in

On a Method for Solving Inelastic Deformation Problems of a Laminated Composite

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

To analyze the deformation process of layered structural elements of inelastic materials, an approach is proposed that makes it easier to solve the problem with complex types of loading. In this method, the package is homogenized, basing on its replacement by a plate with a homogeneous structure through the thickness, the mechanical characteristics of which are determined by identification methods based on the results of numerical experiments with simple types of loading. The results of solving the formulated problem of cyclic tension of three-layer plates with linearly elastic outer layers and a viscoelastic middle layer are presented, obtained by the standard and proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Rabotnov Yu.N. Creep of Structural Elements (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  2. IlТyushin A.A., Pobedrya B.E. Foundations of the Mathematical Theory of Thermoviscoelasticity (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  3. Christensen R.M. Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  4. Koltunov M.A. Creep and Relaxation (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  5. Pobedrya B.E. Mechanics of Composite Materials (MGU, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  6. Kachanov L.M. Creep Theory (Gos. Izd. Fiz. Matem. Lit., Moscow, 1960) [in Russian].

    Google Scholar 

  7. Malkin A.Ya., Isaev A.I. Rheology: Concepts, Methods, Applications (Professiya, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  8. Shepery R.A. "Viscoelastic Behavior of Composite Materials", in: Mechanics of Composite Materials, Ser. Composite Materials 2, ed. by Sendeckyj G.P., 102-195 (Academic Press, New York, 1974).

    Google Scholar 

  9. Malyi V.I., Trufanov N.A. "The Method of Quasi-constant Operators in the Theory of Viscoelasticity of Anisotropic Ageless Materials", Izv. An SSSR. Mekhan. Tv. Tela 6, 148-154 (1987).

    Google Scholar 

  10. Matveenko V.P., Troyanovskiy I.E., Tsaplina G.S. "Construction of Solutions to Problems of the Theory of Elasticity in the Form of Series in the Degree of Elastic Constants and their Application to Viscoelasticity", Prikl. Matem. i Mekhan. 60 (4), 651-659 (1996).

    Google Scholar 

  11. Kovalenko A.D., KilТčinski˘i A.A. "The Method of Variable Moduli in Problems of Linear Hereditary Elasticity", Prikladna. Meh. 6 (12), 27-34 (1970), URL: https://mathscinet.ams.org/mathscinet-getitem?mr=0297192.

    MathSciNet  Google Scholar 

  12. Svetashkov A.A. "Time-effective Moduli of a Linear Viscoelastic Body", Mechan. of Composite Materials. 36, 37-44 (2000).

    Article  Google Scholar 

  13. Giannadakis K., Mannberg P., Joffe R., Varna J. "The Sources of Inelastic Behavior of Glass Fibre/Vinylester Non-crimp Fabric \([\pm45^{\circ}]_{s}\) Laminates", J. Reinforced Plastics and Composites 30 (12), 1015-1028 (2011).

    Article  Google Scholar 

  14. Yudin V.E., Volodin V.P., Gubanova G.N. "Features of the Viscoelastic Behavior of Carbon Plastics Based on a Polymer Matrix: Model Research and Calculation", Mekhan. Kompositnykh Mater. 5, 656-669 (1997).

    Google Scholar 

  15. Peleshko V.A. "On the Construction of Defining Correlations for Viscoelasticity and Creep under Unsteady and Complex Loads", Izv. RAN MTT 3, 144-165 (2006).

    Google Scholar 

  16. Khokhlov A.V. "Two-sided Estimates for the Relaxation Function of the Linear Theory of Heredity through Relaxation Curves during RAMP Deformation and Methods of its Identification", Izv. RAN MTT 3, 81-104 (2018).

    Google Scholar 

  17. Dumansky A.M., Alimov M.A., Terekhin A.V. "Experiment- and computation-based Identification of Mechanical Properties of Fiber Reinforced Polymer Composites", J. Physics: Conf. Ser. 1158 (2), article 022037 (2019).

    Google Scholar 

  18. Van Paepegem W., De Baere I., Degrieck J. "Modeling the Nonlinear Shear Stress-strain Response of Fiber-reinforced Composites. Part I: Experimental results", Composite Sci. and Tech. 66, 1455-1464 (2006).

    Article  Google Scholar 

  19. Paimushin V.N., Kayumov R.A., Kholmogorov S.A. "Experimental Investigation of Residual Strain Formation Mechanisms in Composite Laminates under Cycling Loading", Uchenye Zapiski Kazanskogo Universiteta, Ser. Fiziko-Matem. Nauki 159 (4), 473-492 (2017).

    Google Scholar 

  20. Paimushin V.N., Kholmogorov S.A. "Physical-mechanical Properties of a Fiber Reinforced Composite Based on an ELUR-P Carbon Tape and XT-118 Binder", Mechan. of Composite Materials 54 (1), 2-12 (2018).

    Article  Google Scholar 

  21. Paimushin V.N., Kayumov R.A., Kholmogorov S.A. "Deformation Features and Models of \([\pm45^{\circ}]_{2s}\) Cross-Ply Fiber-Reinforced Plastics in Tension", Mechan. Composite Materials 55 (2), 141-154 (2019).

    Article  Google Scholar 

  22. Paimushin V.N., Kayumov R.A., Kholmogorov S.A., Shishkin V.M. "Defining Relations in Mechanics of Cross-Ply Fiber Reinforced Plastics Under Short-Term and Long-Term Monoaxial Load", Russian Mathematics 62 (6), 75-79 (2018).

    Article  MathSciNet  Google Scholar 

  23. Paimushin V.N., Kayumov R.A., Firsov V.A., Gazizullin R.K., Kholmogorov S.A., Shishov M.A. "Tension and Compression of Flat \([\pm45^{\circ}]_{2s}\) Specimens from Fiber Reinforced Plastic: Numerical and Experimental Investigation of Forming Stresses and Strains", Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki 161 (1), 86-109 (2019).

    Article  MathSciNet  Google Scholar 

  24. Paimushin V.N. "The Analytical-Computational-Experimental Technique For Determining of The Critical Loadings And Free Oscillation Frequencies of Deforming Solid Bodies", Dokl. Akad. Nauk. 330 (1), 52-53 (1993).

    Google Scholar 

  25. Kayumov R.A. "Extended Problem of Identifying the Mechanical Characteristics of Materials Based on the Results of Structural Tests", Izv. RAN. Mekhan. Tv. Tela 2, 94-105 (2004).

    Google Scholar 

  26. Nordin L.O., Varna J. "Methodology for Parameter Identification in Nonlinear Viscoelastic Material Model", Mechan. Time-Dependent Materials 9 (4), 259-280 (2006).

    Google Scholar 

  27. Graupe D. Identification of system (Huntington, New York, 1976).

    MATH  Google Scholar 

  28. Alfutov N.A., Zinov'ev P.A., Popov B.G. Calculation of Multilayer Plates and Shells Made of Composite Materials (Mir, Moscow, 1979).

    Google Scholar 

  29. Grigolyuk E.I., Kulikov G.M. Multilayer Reinforced Shells (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by Russian Foundation for Basic Research (project no. 19-08-00349, Section 1) and Russian Scientific Foundation (project no. 19-19-00059, Section 2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Paimushin, R. A. Kayumov or S. A. Kholmogorov.

Additional information

Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 6, pp. 55–66.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paimushin, V.N., Kayumov, R.A. & Kholmogorov, S.A. On a Method for Solving Inelastic Deformation Problems of a Laminated Composite. Russ Math. 65, 47–56 (2021). https://doi.org/10.3103/S1066369X21060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X21060062

Keywords

Navigation