Skip to main content
Log in

The Radon Transform in the Scheme of C(N)D-Investigations and the Quasi-Monte Carlo Theory

  • Brief Communications
  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a program for studying Radon transforms in accordance with the computational (numerical) diameter (C(N)D) scheme by applying the uniform distribution theory. The main result is that Radon transforms are qualified as optimal among all possible linear functionals that are used to extract numerical information for generating a computational aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Radon, J. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten.” Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig, J. Math. Phys. 69, 262–277 (1917).

    MATH  Google Scholar 

  2. The First 100 Years of the Radon Transform, 27–31 March (Linz, 1917).

  3. Natterer, F. The Mathematics of Computerized Tomography (SIAM: Soc. for Industrial and Appl. Math., 2001).

  4. Hetzenecker, K., Limbeck-Lilienau, C., Schweizer, D., Laufersweiler, B. Innovation durch Grundlagenforschung. Der Beitrag wissenschaftlicher Theorien und Entdeckungen zum gesamtgesellschaftlichen Fortschritt. Begleitheft zur Ausstellung an der Univ. Wien (Wien, 2016).

  5. Temirgaliev, N., Zhubanysheva, A.Zh. “Theory of Approximations, Computational Mathematics, and Numerical Analysis in New Conception of Computational (Numerical) Diameter”, Bulletin of L.N. Gumilyov Eurasian National University. Mathematics. Computer science. Mechanics series 124 (3), 8–88 (2018).

    Article  Google Scholar 

  6. Temirgaliev, N., Zhubanysheva, A.Zh. “Computational (Numerical) Diameter in a Context of General Theory of a Recovery”, Russian Mathematics 63, 79–86 (2019).

    Article  Google Scholar 

  7. Temirgaliev, N., Zhubanysheva, A.Zh. “Order Estimates of the Norms of Derivatives of Functions with Zero Values on Linear Functionals and Their Applications”, Russian Mathematics 61, 77–82 (2017).

    Article  MathSciNet  Google Scholar 

  8. Triebel, H. Interpolation Theory, Function Spaces, Differential Operators (North-Holland Pub. Co., Amsterdam-New York, 1978; Mir, Moscow, 1980).

    MATH  Google Scholar 

  9. Azhgaliev, Sh.U., Temirgaliev, N. “Informativeness of Linear Functionals”, Math. Notes 73 (6), 759–768 (2003).

    Article  MathSciNet  Google Scholar 

  10. Temirgaliev, N., Sherniyazov, K.E., Berikhanova, M.E. “Exact Orders of Computational (Numerical) Diameters in Problems of Reconstructing Functions and Sampling Solutions of the Klein-Gordon Equation from Fourier Coefficients”, Proceedings of the Steklov Institute of Mathematics 282, 165–191 (2013).

    Article  MathSciNet  Google Scholar 

  11. Zhubanysheva, A.Zh., Temirgaliev, N. “Informative Cardinality of Trigonometric Fourier Coefficients and Their Limiting Error in the Discretization of a Differentiation Operator in Multidimensional Sobolev Classes”, Computational Mathematics and Mathematical Physics 55, 1432–1443 (2015).

    Article  MathSciNet  Google Scholar 

  12. Temirgaliev, N., Abikenova, Sh.K., Zhubanysheva, A.Zh., Taugynbaeva, G.E. “Discretization of Solutions to a Wave Equation, Nnumerical Differentiation, and Function Recovery with the Help of Computer (Computing) Diameter”, Russian Mathematics 57, 75–80 (2013).

    Article  Google Scholar 

  13. Korobov, N.M. Number-Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian].

    MATH  Google Scholar 

  14. Hua Loo Keng, Wang Yuan. Application of Number Theory of Numerical Analysis (Springer Verlag, New York, 1981).

    Google Scholar 

  15. Hlawka, E., Firneis, F., Zinterhof, P. Zahlentheoretische Methoden in der numerischen Mathematik (Wien-Munchen-Oldenbourg, 1981).

  16. Bakhvalov, N.S. “Approximate Computation of Multiple Integrals”, Vestn. Mos. Gov. Univ., Ser., Matem., Mekhan. 4, 3–18 (1959) [in Russian].

    MathSciNet  Google Scholar 

  17. Plaskota, L., Wozniakowski, H. Monte Carlo and Quasi-Monte Carlo Methods (Springer Sci. & Business Media, 2010).

  18. Dick, J., Pillichshammer, F. Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  19. Voronin, S.M., Temirgaliev, N. “Quadrature Formulas Associated with Divisors of the Field of Gaussian Numbers”, Math. Notes 46 (2), 597–602 (1989).

    Article  MathSciNet  Google Scholar 

  20. Temirgaliev, N. “Application of the Divisors Theory to Numerical Integration of Periodic Functions in Several Variables”, Math. USSR-Sb. 69 (2), 527–542 (1991).

    Article  MathSciNet  Google Scholar 

  21. Bailov, E.A., Zhubanysheva, A.Zh., Temirgaliev, N. “General Algorithm for the Numerical Integration of Functions of Several Variables”, Dokl. Ross. Akad. Nauk 416 (2), 169–173 (2007).

    MathSciNet  Google Scholar 

  22. Zhubanysheva, A.Zh., Temirgalieva, Zh.N., Temirgaliev, N. “Application of Divisor Theory to the Construction of Tables of Optimal Coefficients for Quadrature Formulas”, Computational Mathematics and Mathematical Physics 49 (1), 12–22 (2009).

    Article  MathSciNet  Google Scholar 

  23. Bailov, E.A., Sikhov, M.B., Temirgaliev, N. “General Algorithm for the Numerical Integration of Functions of Several Variables”, Computational Mathematics and Mathematical Physics 54 (7), 1061–1078 (2014).

    Article  MathSciNet  Google Scholar 

  24. Sherniyazov, K. Approximate Restoration of Functions and Solutions to the Heat Conductivity Equation of with Functions of Distribution of the Initial Temperature in Classes E, SW, and B, PhD Thesis (Mathematics and Physics) (Al-Farabi Kazakh National University, 1998).

  25. Temirgaliev, N. “Computational Diameter. Algebraic Theory of Numbers and Harmonic Analysis in Reconstruction Problems (the Quasi-Monte-Carlo Method). Theory of Embeddings and Approximations. Fourier Series”, Bulletin of L.N. Gumilyov Eurasian National University. Special Issue dedicated to scientific achievements of L.N. Gumilyov ENU mathematicians (2010).

Download references

Funding

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (project no. AR05132938 “The Radon transform in discretization problems”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev or G. E. Taugynbaeva.

Additional information

Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, No. 3, pp. 98–104.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temirgaliev, N., Abikenova, S.K., Azhgaliev, S.U. et al. The Radon Transform in the Scheme of C(N)D-Investigations and the Quasi-Monte Carlo Theory. Russ Math. 64, 87–92 (2020). https://doi.org/10.3103/S1066369X2003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X2003010X

Key words

Navigation