Skip to main content

On Irrationality Measure of arctan \(\frac{1}{3}\)

Abstract

We investigate the arithmetic properties of the value arctan \(\frac{1}{3}\). We elaborate special integral construction with the property of symmetry for evaluating irrationality measure of this number. We research linear form, generated by this integral, and prove a new result for extent of the irrationality of arctan \(\frac{1}{3}\), which improves the previous one.

This is a preview of subscription content, access via your institution.

References

  1. Salikhov, V. Kh. “On Irrationality Measure of ln 3”, Dokl. RAN 417, No. 6, 753–755 (2007) [in Russian].

    MathSciNet  MATH  Google Scholar 

  2. Wu, Q., Wang, L. “On the Irrationality Measure of log 3”, J. Number Theory 142, 264–273 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. Huttner, M. “Irrationalité de Certaines Intégrales Hypergéométriques”, J. Number Theory 26, 166–178 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. Heimonen, A., Matala-Aho, T., Väänänen, K. “On Irrationality Measures of the Values of Gauss Hypergeometric Function”, Manuscripta Math. 81, No. 1–2, 183–202 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. Heimonen, A., Matala-Aho, T., Väänänen, K. “An Application of Jacobi Type Polynomials to Irrationality Measures”, Bull. Austral. Math. Soc. 50, No. 2, 225–243 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. Tomashevskaya, E. B. “On Irrationality Measures of Number ln 5 + π/2 and Some Other Numbers”, Chebyshevsk. sb. 8, No. 2, 97–108 (2007) [in Russian].

    MathSciNet  MATH  Google Scholar 

  7. Bashmakova, M. G. textquotedblleft On Approaching of Values of Hypergeometric Gauss FunctionWith Rational Fractions”, Matem. zametki 88, No. 6, 785–797 (2010) [in Russian].

    Article  Google Scholar 

  8. Hata, M. “Rational Approximation to π and Some Other Numbers”, Acta Arith. 63, No. 4, 335–349 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, Q. “On the Linear Independence Measure of Logarithms of Rational Numbers”, Math. Comput. 72 (242), 901–911 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. Salikhov, V. Kh. “On Irrationality Measures of Number π”, Usp. Mat. Nauk 63, No. 3, 163–164 (2008) [in Russian].

    Article  Google Scholar 

  11. Marcovecchio R. “The Rhin–Viola Method for ln 2”, Acta Arith. 139, No. 2, 147–184 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Supported by Russian Found of Fundamental Research, grant No. ‘18-01-00296A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Kh. Salikhov or M. G. Bashmakova.

Additional information

Russian Text © V.Kh. Salikhov, M.G. Bashmakova, 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, No. 1, pp. 69–75.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salikhov, V.K., Bashmakova, M.G. On Irrationality Measure of arctan \(\frac{1}{3}\). Russ Math. 63, 61–66 (2019). https://doi.org/10.3103/S1066369X19010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X19010079

Key words

  • irrationality measure
  • linear form