Skip to main content
Log in

Topological Methods in One Numerical Scheme of Solving Three-Dimensional Continuum Mechanics Problems

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We discuss numerical schemes of finite element method for solving the continuum mechanics problems. Previously a method of acceleration of calculations was developed which uses the simplicial mesh inscribed in the original cubic cell partition of a three-dimensional body. In this paper we show that the obstacle to the construction of this design may be described in terms of homology groups modulo 2. The main goal of the paper is to develop a method of removing this obstacle. The reaching of the goal is based on efficient algorithms for computing bases of the homology groups which are dual with respect to the intersection form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lapteva, A. V., Yakovlev, E. I. “Index Vector-Function and Minimal Cycles”, Lobachevskii J.Math. 22, 35–46 (2006).

    MathSciNet  MATH  Google Scholar 

  2. Guskov, I., Wood, Z. J. “Topological Noise Removal”, Graphics Interface Proceedings, 19–26 (2001).

    Google Scholar 

  3. Wood, Z. J., Hoppe, H., Desbrun, M., Shroder, P. “Removing Excess Topology From Isosurfaces”, ACM Transactions on Graphics 23, No. 2, 190–208 (2004).

    Article  Google Scholar 

  4. Lapteva, A. V., Yakovlev, E. I. “Minimal 1-Cycles Generating a Canonical Basis of 2-Manifold’s Homology Group”, Internat. J. Pure and Appl.Math. 31, No. 4, 555–570 (2006).

    MathSciNet  MATH  Google Scholar 

  5. Ghrist, R., Muhammad, A. “Coverage and Hole-Detection in Sensor Networks via Homology”, Proc. of 4th internat. symposium on Information processing in sensor networks, IEEE Press, 254–260 (2005).

    Google Scholar 

  6. De Silva, V., Glirist, R. “HomologicalSensorNetworks”, Notices Amer.Math. Soc. 54, No. 1, 10–17 (2007).

    MathSciNet  Google Scholar 

  7. Bazaikin, Y. V., Baikov, V. A., Taimanov, I. A., Yakovlev, A. A. “Numerical Analysis of Topological Characteristics of Three-Dimensional Geological Models of Oil and Gas Fields”, Mat. Model. 25, No. 10, 19–31 (2013) [in Russian].

    MathSciNet  MATH  Google Scholar 

  8. Chekmarev, D. T. “Finite Element Schemes on Rare Meshes”, Probl. At. Sci. Techn. Ser. Math. Model. Phys. Proc. 2, 49–54 (2009) [in Russian].

    Google Scholar 

  9. Spirin, S. V., Chekmarev, D. T., Zhidkov, A. V. “Solving the 3D Elasticity Problems by Rare Mesh FEM Scheme”, Finite Diff. Methods, Theory and Appl. 9045 of the Ser. Lect. Notes in Comput. Sci., 379–384 (2015).

    Google Scholar 

  10. Chekmarev, D. T., Zhidkov, A. V., Zefirov, S. V., Krutova, K. A., Spirin, S. V. “Numerical Solving Three-Dimensional Problems of the Theory of Elasticity and Plasticity With the Use of Rare Mesh Variational-Difference and CE Schemes”, Proc. of XI All-Russian Congress on Fundamental Probl. of Theor. and Appl. Mekh., August 20–24, 2015, Kazan (Kazan Univ. Perss, Kazan, 2015), pp. 4048–4050 [in Russian].

    Google Scholar 

  11. Chekmarev, D. T., Krutova, K. A. “On One Property ofHexahedralGrids as Graphs”, Education, science and econom. in high schools and schools. Integration in the international educational space: Proc. of International scientific Conf., September 28–October 2, 2015, Armenia,Goris (PFUR Publishing House, Moscow, 2015), Vol. I, 98–101 [in Russian].

    Google Scholar 

  12. Reese, S., Wriggers, P. “A Stabilization Technique to Avoid Hourglassing in Finite Elasticity”, Int. J.Num. Meth. Engrg. 48, 79–109 (2000).

    Article  MATH  Google Scholar 

  13. Golovanov, A. I., Kornishin, M. S. Introduction to the Finite ElementMethod of the Static of Thin Shells (KFTI press, Kazan, 1990) [in Russian].

    Google Scholar 

  14. Krutova K. A. “Numerical Solving Three-Dimensional Dynamic Problems of the Theory of Elasticity and Plasticity on the Basis of an Openwork Variational-Difference Scheme”, Candidate’s dissertation inMathematics ana Physics (UNN, Nizhny Novgorod, 2015) [in Russian].

    Google Scholar 

  15. Zhidkov, A. V., Krutova, K. A., Mironov, A. A., Chekmarev, D. T. “Numerical Solving 3-Dimensional Dynamic Elastic-Plastic Problems Using the Rare Mesh Scheme of the Finite Element Method”, Probl. prochnosi i plastichosti 79, No. 3, 327–337 (2017) [in Russian].

    Google Scholar 

  16. Seifert, H., Threlfall, W. A Textbook of Topology (Academic Press, 1980).

    MATH  Google Scholar 

  17. Dold, A. Lectures on Algebraic Topology (Springer, 1995; RKhD, Izhevsk, 2001).

    MATH  Google Scholar 

  18. Dubrovin, B. A., Fomenko, A. T., Novikov, S. P. Modern Geometry. Methods and applications. Part III. Introduction to Homology Theory (Nauka, Moscow, 1984; Springer-Verlag, 1990).

    MATH  Google Scholar 

  19. Yakovlev E.I. Computational topology (UNN, Nizhny Novgorod, 2005) [in Russian].

    Google Scholar 

  20. Novikov, F. A. Discrete Mathematics for Programmers (Piter, St.-Petersburg, 2000) [in Russian].

    Google Scholar 

  21. Yakovlev, E. I., Tsenova, A. A. “Algorithm for Calculating the Bases of Groups of Two-Dimensional Homology of Branched Triangulated Surfaces”, Trudy Nizhny Novgorod State Tech. University, No. 2 (95), 331–338 (2012) [in Russian].

    Google Scholar 

  22. Edelsbrunner, H., Harer, J. L. Computational Topology. An Introduction (AMS, 2010).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Yakovlev.

Additional information

Original Russian Text © E.I. Yakovlev, D.T. Chekmaryov, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, No. 9, pp. 81–96.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, E.I., Chekmaryov, D.T. Topological Methods in One Numerical Scheme of Solving Three-Dimensional Continuum Mechanics Problems. Russ Math. 62, 72–85 (2018). https://doi.org/10.3103/S1066369X18090086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X18090086

Keywords

Navigation