Skip to main content
Log in

On Solvability of a Fluid Flow Alpha-Model With Memory

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We study weak solvability of an alpha-model in non-Newtonian hydrodynamics. If the parameter alpha equals zero, then the alpha-model coincides with the classical one describing a fluid flow with memory. This model takes into account fluid’s memory along trajectories of movement. Additionally, we show that solutions of the alpha-model tend to solutions to the classical model as the parameter alpha tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorotnikov, D. A. Global Generalized Solutions for Maxwell-Alpha and Euler-Alpha Equations, Nonlinearity 25, No. 2, 309–327 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  2. Zvyagin, A. V., Polyakov, D. M. On the Solvability of the Jeffreys–Oldroyd-Alpha Model, Differential Equations 52, No. 6, 761–766 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. Zvyagin, V. G., Dmitrienko, V. T. On Weak Solutions to the Initial Boundary Value Problem for the Motion Equation of a Viscoelastic Fluid, DokladyMathematics 64, No. 2, 190–193 (2001)

    MATH  Google Scholar 

  4. Zvyagin, V. G., Dmitrienko, V. T. On Weak Solutions of a Regularized Model of a Viscoelastic Fluid, Differ. Equ. 38, No. 12 1731–1744 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. Crippa, G., de Lellis, C. Estimates and Regularity Results for the diPerna–Lions Flow, J. ReineAngew. Math. 616, 15–46 (2008).

    MathSciNet  MATH  Google Scholar 

  6. DiPerna, R. J., Lions, P. L. Ordinary Differential Equations, Transport Theory and Sobolev Spaces, Invent. Math. 98, 511–547 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. Zvyagin V. G., Orlov V.P. On the weak solvability of the problem of viscoelasticity with memory, Differential Equations 53, No. 2 212–217 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fursikov, A. V. Optimal Control of Distributed Systems. Theory and Applications (Translations of Mathematical Monographs. AmericanMathematical Society 187 AMS, Providence, Rhode Island, 1999).

    Book  MATH  Google Scholar 

  9. Zvyagin, V. G., Turbin, M. V. Mathematical Problems of Hydrodynamics of Viscoelastic Media (KRASAND URSS,Moscow, 2012) [in Russian].

    Google Scholar 

  10. Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis (North-Holland, Amsterdam, 1977).

    MATH  Google Scholar 

  11. Zvyagin, V. G. Topological Approximation Approach to Study Mathematical Problems of Hydrodynamics, J.Math. Sci. 201, No. 6, 830–858 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zvyagin.

Additional information

Original Russian Text © A.V. Zvyagin, V.G. Zvyagin, D.M. Polyakov, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, No. 6, pp. 78–84.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, A.V., Zvyagin, V.G. & Polyakov, D.M. On Solvability of a Fluid Flow Alpha-Model With Memory. Russ Math. 62, 69–74 (2018). https://doi.org/10.3103/S1066369X18060075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X18060075

Keywords

Navigation