Russian Mathematics

, Volume 62, Issue 4, pp 52–59 | Cite as

Investigation of Boundary-Value Problem for Stationary System of Equations of Viscous Non-Isothermal Fluid



In the Stokes approximation at small Reynolds and Peclet numbers, we obtain a solution to the boundary-value problem of flow around of particles of spherical shape for stationary system of equations of a viscous non-isothermal fluid comprising a linearized by speed Navier–Stokes equation system and the equation of heat transfer given an exponential-power law of dependence of viscosity of fluid on temperature.


equations of hydrodynamics the linearized by velocity Navier–Stokes equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ladyzhenskaya, O. A. “Untersuchung der Navier–Stokesschen Gleichung für den Fall der stationären Bewegung einer inkompressiblen Flüssigkeit”, Usp.Mat. Nauk XIV No. 3(87), 75–97 (1959) [in Russian].MATHGoogle Scholar
  2. 2.
    Ladyzhenskaya, O. A. “The Sixth Millennium Problem: Navier–Stokes Equations, Existence and Smoothness”, Russ. Math. Surv. 58, No. 2, 251–286 (2003).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Naidenov, V. I. “Steady Flow of a Viscous IncompressibleFluid Taking TemperatureDependence of Viscosity Into Account”, J. Appl.Math. Mech. 38, No. 1, 144–148 (1974).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Golovin, A. M., Fominykh, V. V. “Motion of a Spherical Particle in a Viscous Nonisothermal Fluid”, Fluid Dyn. 18, 26–29 (1983).CrossRefMATHGoogle Scholar
  5. 5.
    Malay, N. V., Pleskanev, A. A., Shchukin, E. R. “Effect of Internal Heat Evolution on the Motion of a Solid Particle in a Viscous Fluid”, Technical Physics 76, No. 3, 317–321 (2006).CrossRefGoogle Scholar
  6. 6.
    Malaj, N. V., Shchukin, E. R., Yalamov, Yu. I. “Thermocapillary Drift of a Heated Droplet in a Viscous Liquid in the Field of Electromagnetic Radiation”, Doklady Physics 379, No. 6, 1–6 (2001).Google Scholar
  7. 7.
    Bretschneider, S. Properties of Gases and Liquids. Engineering Methods of Calculation (Khimiya, Moscow, 1966) [Russian translation].Google Scholar
  8. 8.
    Happel, J., Brenner, H. Low Reynolds Number Hydrodynamics (Noordhoff, Leyden, 1965).MATHGoogle Scholar
  9. 9.
    Landau, L. D., Lifshits, E.M. Fluid Mechanics (ITTL, Moscow, 1954; Pergamon Press, Oxford–Elmsford, New York, 1987), Vol. 6.Google Scholar
  10. 10.
    Glushak, A. V., Malaj, N. V., Mironova, N. N. “Solution of the Boundary Value Problem for the Navier–Stokes Equation for the Flow of a Gaseous Medium Past a Heated Spheroid”, Differ. Equ. 48 (6), 886–890 (2012).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kamke, E. Differentialgleichungen. Lö sungsmethoden und Lö sungen I. Gewö hnliche Differentialgleichungen (Leipzig, 1942; GIFML,Moscow, 1981).Google Scholar
  12. 12.
    Coddington, E. A., Levinson, N. Theory of Ordinary Differential Equations (New York, McGraw-Hill, 1955; In. Lit.,Moscow, 1958).MATHGoogle Scholar
  13. 13.
    Malai, N. V., Shchukin, E. R., Stukalov, A. A., Ryazanov, K. S. “Gravity-Induced Motion of a Uniformly Heated Solid Particle in aGaseous Medium”, Journal of AppliedMechanics and Technical Physics 49, No. 1, 58–63 (2008).CrossRefMATHGoogle Scholar
  14. 14.
    Malai, N. V., Shchukin, E. R., Shulimanova, Z. L. “Molecular Heat Exchange of a Solid Spherical Particle With a GaseousMedium”, High Temperature 51, No. 4, 495–499 (2013).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. V. Malai
    • 1
  • E. R. Shchukin
    • 2
  • A. V. Limanskaya
    • 1
  1. 1.Belgorod State National Research UniversityBelgorodRussia
  2. 2.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations