Skip to main content
Log in

Bifurcations in the Generalized Korteweg–de Vries Equation

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We study the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with periodic in the spatial variable boundary conditions. For various values of parameters, in a sufficiently small neighborhood of the zero equilibrium state we construct asymptotics of periodic solutions and invariant tori. Separately we consider the case when the stability spectrum of the zero solution contains a countable number of roots of the characteristic equation. In this case we state a special nonlinear boundary-value problem which plays the role of a normal form and determines the dynamics of the initial problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korteweg, D. J., de Vries, G. “On the Change of Formof LongWaves Advancing in a Rectangular Canal and on a New Type of Long StationaryWaves”, Phil. Mag. 39, 422–443 (1895).

    Article  MATH  Google Scholar 

  2. Kudryashov, N. A. Methods of Nonlinear Mathematical Physics. Tutorial (Izd. Dom “Intellekt”, Dolgoprudnyi, 2010) [in Russian].

    Google Scholar 

  3. Nikolenko, N. A. “Invariant AsymptoticallyStable Tori of the PerturbedKorteweg–deVries Equation”, Russ. Math. Surv. 35, No. 5, 139–207 (1980).

    Article  MathSciNet  Google Scholar 

  4. Burgers, J.M. “AMathematicalModel Illustrating the Theory of Turbulence”, Adv. Appl.Mech. 1, 171–199 (1948).

    Article  Google Scholar 

  5. Kashchenko, S. A. “Normal Form for the Korteweg–de Vries–Burgers Equation”, Dokl.Math. 93, No. 3, 331–333 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bibikov, Yu. N. “Bifurcations of Hopf Type for Quasiperiodic Motions”, Differents. Uravn. 16, No. 9, 1539–1544 (1980) [in Russian].

    MathSciNet  Google Scholar 

  7. Bibikov, Yu. N. “Bifurcation of a Stable Invariant Torus from an Equilibrium”, Math. Notes 48, No. 1, 632–635 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartman, P. Ordinary Differential Equations (JohnWiley & Sons, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  9. Mitropol’skii, Yu. A. and Lykova, O. B. Integral Manifolds in Nonlinear Mechanics (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  10. Bruno, A.D., The Local Method ofNonlinear Analysis of Differential Equations (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  11. Hassard, B., Kazarinov, N., and Wan, N. Theory and Applications of Bifurcation of Cycle Generation (Mir, Moscow, 1985) [Russian translaton].

    Google Scholar 

  12. Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 2002; Inst. Komp’ut. Issledov., Moscow., 2002).

    MATH  Google Scholar 

  13. Rabinovich, M. I. and Trubetskov, D. I. Introduction to the Theory of Oscillations (RKhD, Izhevsk, 2000) [in Russian].

    MATH  Google Scholar 

  14. Kudryashov, N. A. “On ‘New Travelling Wave Solutions’ of the KdV and the KdV–Burgers Equations”, Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 1891–1900 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kashchenko, S. A., “On Quasinormal Forms for Parabolic Systems with Small Diffusion”, Sov. Math. Dokl. 37, No. 2, 510–513 (1988).

    MATH  Google Scholar 

  16. Kashchenko, S. A. “Normalization in the Systems with Small Diffusion”, Int. J. of Bifurcations and Chaos 6, No. 7, 1093–1109 (1996).

    Article  MathSciNet  Google Scholar 

  17. Kashchenko, I. S. and Kashchenko, S. A. “Quasi-Normal Forms of Two-Component Singularly Perturbed Systems”, Comput. Math. Math. Phys. 52, No. 8, 1163–1172 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kashchenko, I. S., “Multistability in Nonlinear Parabolic Systems with Low Diffusion”, Dokl. Math. 82, No. 3, 878–881 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kashchenko.

Additional information

Original Russian Text © S.A. Kashchenko, M.M. Preobrazhenskaya, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, No. 2, pp. 54–68.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, S.A., Preobrazhenskaya, M.M. Bifurcations in the Generalized Korteweg–de Vries Equation. Russ Math. 62, 49–61 (2018). https://doi.org/10.3103/S1066369X18020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X18020068

Keywords

Navigation