Skip to main content
Log in

From integral estimates of functions to uniform and locally averaged ones

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Obtaining pointwise estimates from above for a function or its averages, under known integral restrictions on the growth of the function, often arise in the function theory. We offer an approach to such problems based on integral Jensen’s inequality with a convex function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanin, A. V. “Certain Criteria for Weak Sufficiency”, Mathematical Notes of the Academy of Sciences of the USSR, 40 (4), 757–764 (1986).

    Article  MATH  Google Scholar 

  2. Abanin, A. V. “On the Continuation and Stability ofWeakly Sufficient Sets”, SovietMathematics 31, No. 4, 1–10 (1987).

    Google Scholar 

  3. Abanin, A. V. “Weakly Sufficient Sets and Absolutely Representative Systems”, Doctoral Dissertation in Mathematics and Physics (Rostov State Univ., Rostov-on-Don, 1995) [in Russian].

    Google Scholar 

  4. Bierstedt, K. D., Bonet, J., Taskinen J. “AssociatedWeights and Spaces of Holomorphic Functions”, Studia Math. 127, 137–168 (1998).

    MathSciNet  MATH  Google Scholar 

  5. Baiguskarov, T. Yu., Khabibullin, B. N. “Holomorphic Minorants of Plurisubharmonic Functions”, Funct. Anal. Appl. 50, No. 1, 62–65 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. Khabibullin, B. N. “Dual Representation of Superlinear Functionals and its Applications in Function Theory. II”, Izv. Math. 65, No. 5, 1017–1039 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. Epifanov, O. V. “Solvability of the Cauchy–Riemann Equation With Constraints on the Growth of the Functions, and Weighted Approximation of Analytic Functions”, Soviet Mathematics 34, No. 2, 56–59 (1990).

    MathSciNet  MATH  Google Scholar 

  8. Epifanov, O.V. “On Solvability of the Nonhomogeneous Cauchy–Riemann Equation in Classes of Functions That are BoundedWithWeights or Systems ofWeights”, Math.Notes 51, No. 1, 54–60 (1992).

    Article  MathSciNet  Google Scholar 

  9. Bayguskarov, T. Yu., Talipova, G. R., Khabibullin, B. N. “Subsequences of Zeros for Classes of Entire Functions of Exponential Type, Allocated by Restrictions on Their Growth”, St. Petersburg Math. J. 28, No. 2, 127–151 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. Khabibullin, B. N., Baiguskarov, T. Yu. “The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function”, Math.Notes 99, No. 4, 576–589 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ortega-Cerdá, J. “Multipliers andWeighted \(\bar \partial \)-Estimates”, Rev.Mat. Iberoamericana 18, 355–377 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. Niculescu, C. P. “An Extension of Chebyshev’s Inequality and its Connection With Jensen’s Inequality”, J. Inequal. Appl. 6, No. 4, 451–462 (2001).

    MathSciNet  MATH  Google Scholar 

  13. Niculescu, C. P., Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach, CMS Books inMath. (Springer-Verlag, New York, 2006), Vol. 23.

    Book  Google Scholar 

  14. Pavić, Z., Pečarić, J., Perić, I. “Integral, Discrete and Functional Variants of Jensen’s Inequality”, J. Math. Inequal. 5, No. 2, 253–264 (2011).

    MathSciNet  MATH  Google Scholar 

  15. Horváth, L. “A Refinement of the Integral Form of Jensen’s Inequality”, J. Inequal. Appl. 2012, No. 178, 1–19 (2012).

    MathSciNet  MATH  Google Scholar 

  16. Abramovich, Sh., Persson, L.-E. “Some New Estimates of the ‘Jensen gap’”, J. Inequal. Appl. 2016, No. 39, 1–9 (2016).

    MathSciNet  MATH  Google Scholar 

  17. Zhu, K. Analysis on Fock Spaces, Graduate Texts in Mathematics (Springer, New York–Heidelberg–Berlin, 2012), Vol. 263.

    Book  MATH  Google Scholar 

  18. Halmos, P. R. Measure Theory (Springer, New York–Heidelberg–Berlin, 1950; In. Lit.,Moscow, 1953).

    Google Scholar 

  19. Bogachev, V. I. Measure Theory (Springer, New York–Berlin–Heidelberg, 2007), Vol. 1.

    Book  MATH  Google Scholar 

  20. Bogachev, V. I. Measure Theory (Springer, New York-Berlin-Heidelberg, 2007), Vol. 2.

    Book  MATH  Google Scholar 

  21. Bourbaki, N. Elements of Mathematics. Functions of a Real Variable (Springer, Berlin–Heidelberg–New York, 2004).

    Book  MATH  Google Scholar 

  22. Landkof, N. S. Foundations ofModern Potential Theory (Springer, Berlin–Heidelberg–NewYork, 1972).

    Book  MATH  Google Scholar 

  23. Pečarić, J. E., Proschan, A., Tong, Y. L. Convex Functions, Partial Orderings, and Statistical Applications (Academic Press, London, 1992).

    MATH  Google Scholar 

  24. Lieb, E., Loss, M. Analysis. Graduate Studies in Mathematics (AMS, Providence, Rhode Island, 1997), Vol. 14.

    Google Scholar 

  25. Hörmander, L. Notions of Convexity (Birkhäser, Boston, 1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Baladai.

Additional information

Original Russian Text © R.A. Baladai, B.N. Khabibullin, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 10, pp. 15–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baladai, R.A., Khabibullin, B.N. From integral estimates of functions to uniform and locally averaged ones. Russ Math. 61, 11–20 (2017). https://doi.org/10.3103/S1066369X17100036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X17100036

Keywords

Navigation