Skip to main content
Log in

Investigation of solutions to one family of mathematical models of living systems

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider a family of integral equations used as models of some living systems. We prove that an integral equation is reducible to the equivalent Cauchy problem for a non-autonomous differential equation with point or distributed delay dependently on the choice of the survival function of system elements. We also study the issues of the existence, uniqueness, nonnegativity, and continuability of solutions. We describe all stationary solutions and obtain sufficient conditions for their asymptotic stability. We have found sufficient conditions for the existence of a limit of solutions on infinity and present an example of equations where the rate of generation of elements of living systems is described by a unimodal function (namely, the Hill function).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M. E., MacCamy, R. C. “Non-Linear Age-Dependent Population Dynamics”, Arch. Rat. Mech. Anal. 54, No. 3, 281–300 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  2. Swick, S. E. “On Nonlinear Age-Dependent Model of Single Species Population Dynamics”, SIAM J. Appl. Math. 32, No. 2, 484–498 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. Cooke, K., York, J. “Some Equations Modelling Growth Processes and Gonorhea Epidemics”, Math. Biosc. 16, No. 1, 75–101 (1973).

    Article  Google Scholar 

  4. Busenberg, S., Cooke, K. “The Effect of Integral Conditions in Certain Equations Modelling Epidemics and Population Growth”, J. Math. Biol. 10, No. 1, 13–32 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  5. Hethcote, H. W., Stech, H. W., van den Driessche, P. “Stability Analysis for Models of Diseases without Immunity”, J. Math. Biol. 13, No. 2, 185–198 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. Belair, J. “Lifespans in Population Models: Using Time Delay”, in Lecture Notes in Biomath. (Springer, New York, 1991), Vol. 92, pp. 16–27.

    Google Scholar 

  7. Aiello, W. G., Freedman, H. I., Wu, J. “Analysis of a Model Representing Stage-Structured Population Growth with State-Dependent Time Delay”, SIAM J. Appl. Math. 52, No. 3, 855–869 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bocharov, G., Hadeler, K. P. “Structured Population Models, Conservation Laws, and Delay Equations”, J. Diff. Equat. 168, No. 1, 212–237 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. Pertsev, N. V. “Two-Sided Estimates for Solutions of an Integrodifferential Equation that Describes the Hematogenic Process”, Russian Mathematics 45, No. 6, 55–59 (2001).

    MathSciNet  MATH  Google Scholar 

  10. Beretta, E., Hara, T., Ma, W., Takeuchi, Y. “Global Asymptotic Stability of an SIR Epidemic Model with Distributed Time Delay”, Nonlin. Anal. 47, No. 6, 4107–4115 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. Pertsev, N. V., Pichugina, A. N., and Pichugin, B. Yu. “Behaviour of Solutions of the Lotka–Volterra Dissipative Integral Model”, Sib. Zh. Ind. Mat. 6, No. 2, 95–106 (2003) [in Russian].

    MathSciNet  MATH  Google Scholar 

  12. Jin, Z., Zhien, M., Maoam, H. “Global Stability of an SIRS Epidemic Model with Delays”, Acta Math. Scien. 26, No. 2, 291–306 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. Malygina, V. V., Mulyukov, M. V., and Pertsev, N. V. “On the Local Stability of a Population Dynamics Model with Delay”, Sib. Èlektron. Mat. Izv., No. 11, 951–957 (2014).

    MathSciNet  MATH  Google Scholar 

  14. Fan, G., Thieme, H. R., Zhu, H. “Delay Differential Systems for Tick Population Dynamics”, J. Math. Biol. 71, No. 5, 1017–1048 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. Krasnosel’skii, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskii, Ya. B., and Stetsenko, V. Ya. Approximate Solution of Operator Equations (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  16. Krasovskii, N. N. Some Problems of the Theory of Stability of Motion (GIFML, Moscow, 1959) [in Russian].

    Google Scholar 

  17. El’sgol’tz, L. E. and Norkin, S. B., Introduction to the Theory of Differential Equations with Deviating Argument (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  18. Kolmanovskii, V. B. and Nosov, V. R. Stability and Periodic Modes of Regulated Systems with Delay (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  19. Obolenskii, A. Yu. “The Stability of Solutions of AutonomousWaz? ewski Systems with Delay”, Ukrain. Mat. Zh. 35, No. 5, 574–579 (1983) [in Russian].

    MathSciNet  Google Scholar 

  20. Azbelev, N. V., Maksimov, V. P., and Rakhmatullina, L. F. The Elements of the Contemporary Theory of Functional Differential Equations. Methods and Applications (Inst. Komp’ut. Issledov., Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  21. Pertsev, N. V. “On Bounded Solutions of a Class of Systems of Integral Equations That Arise in Models of Biological Processes”, Differential Equations 35, No. 6, 835–840 (1999).

    MathSciNet  MATH  Google Scholar 

  22. Daletskii, Yu. L. and Krein, M. G. Stability of Solutions of Differential Equations in Banach Spaces (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pertsev.

Additional information

Original Russian Text © N.V. Pertsev, B.Yu. Pichugin, A.N. Pichugina, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 9, pp. 54–68.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pertsev, N.V., Pichugin, B.Y. & Pichugina, A.N. Investigation of solutions to one family of mathematical models of living systems. Russ Math. 61, 48–60 (2017). https://doi.org/10.3103/S1066369X17090067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X17090067

Keywords

Navigation