Skip to main content
Log in

A method of successive approximations for solving the quasi-variational Signorini inequality

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We solve the semicoercive quasi-variational Signorini inequality that corresponds to the contact problem with friction known in the elasticity theory by a method of successive approximations. For solving auxiliary problems with a given friction occurring on each outer step of the iterative process we use the Uzawa method based on iterative proximal regularization of a modified Lagrangian functional. We study the stabilization of the sequence of auxiliary finite-element solutions obtained on outer steps of the method of successive approximations and present results of numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hlavachek, I., Haslinger, J., Necas, J., and Lovishek, J. Solving Variational Inequalities in Mechanics (Mir, Moscow, 1986) [Russ. transl.].

    Google Scholar 

  2. Kikuchi N., Oden T. Contact Problem in Elasticity: a Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988).

    Book  MATH  Google Scholar 

  3. Haslinger J., Hlavacek I., Necas J. Numerical Methods for Unilateral Problems in Solid Mechanics, Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions (Eds.), Vol. IV (North Holland, 1996), pp. 313–486.

    Google Scholar 

  4. Vikhtenko, E. M. and Namm, R. V. “Duality Scheme for Solving the Semicoercive Signorini Problem with Friction”, Zhurn. Vychisl.Matem. iMatem. Fiz. 47, No. 12, 2023–2036 (2007).

    MathSciNet  Google Scholar 

  5. Vikhtenko, E.M. and Namm, R. V. “Iterative ProximalRegularization of theModified Lagrangian Functional for Solving theQuasi-Variational Signorini Inequality”, Zhurn. Vychisl.Matem. iMatem. Fiz. 48, No. 9, 1–9 (2008).

    Google Scholar 

  6. Kravchuk, A. S. Variational and Quasi-Variational Inequalities inMechanics (MGAPI, Moscow, 1997) [in Russian].

    Google Scholar 

  7. Antipin, A. S. Gradient and Extragradient Approaches to Bilinear Equilibrium Programming (VTs RAN, Moscow, 2002) [in Russian].

    Google Scholar 

  8. Antipin, A. S., Golikov A. I., and Khoroshilova, E. V. “Sensitivity Function: Properties and Applications”, Zhurn. Vychisl. Matem. iMatem. Fiz. 51, No. 12, 1–17 (2011).

    MathSciNet  MATH  Google Scholar 

  9. Glowinski R., Lions J.-L., Tremolier R. Numerical Analysis of Variational Inequalities (Mir, Moscow, 1979) [Russ. transl.].

    Google Scholar 

  10. Glowinski, R. Numerical Methods for Nonlinear Variational Problems (Springer, New York, 1984).

    Book  MATH  Google Scholar 

  11. Woo, G.S., Namm, R.V., and Sachkov, S.A. textquotedblleft An IterativeMethod Based on aModified Lagrangian Functional for Finding a Saddle Point in the Semicoercive Signorini Problem”, Zhurn. Vychisl.Matem. iMatem. Fiz. 46, No. 1, 26–36 (2006).

    MATH  Google Scholar 

  12. Woo, G.S., Kim, S., Namm, R.V., and Sachkov, S.A., “Iterative Proximal RegularizationMethod for Finding a Saddle Point in the Semicoercive Signorini Problem”, Zhurn. Vychisl. Matem. i Matem. Fiz. 46, No. 11, 2024–2031 (2006).

    Google Scholar 

  13. Vikhtenko E.M., Woo, G.S., and Namm, R.V. “The Methods for Solving Semi-Coercive Variational Inequalities ofMechanics on the Basis of Modified Lagrangian Functionals”, Dal’nevost.Mat. Zh. 14, No. 1, 6–17 (2014).

    MATH  Google Scholar 

  14. Vikhtenko E.M., Woo, G.S., and Namm R.V. “Sensitivity Functionals in Contact Problems of Elasticity Theory”, Zhurn. Vychisl.Matem. iMatem. Fiz. 54, No. 7, 1218–1228 (2014).

    MathSciNet  MATH  Google Scholar 

  15. Konnov, I. and Gwinner, J. “A Strongly Convergent Combined Relaxation Method in Hilbert Spaces”, Numerical Funct. Anal. Optim. 35, Nos. 7–9, 1066–1077 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. Marchuk, G.I. and Agoshkov, V.I. Introduction into Projection-Grid Methods (Fizmatlit, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  17. Zenkevich, O. and Morgan, K. Finite Elements and Approximations (Mir, Moscow, 1986) [in Russian].

    Google Scholar 

  18. Namm R.V. and Sachkov S.A. “Solving the Quasi-Variational Signorini Inequality by the Method of Successive Approximations”, Zhurn. Vychisl.Matem. iMatem. Fiz. 49, No. 5, 805–814 (2009).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Namm.

Additional information

Original Russian Text © R.V. Namm and G.I. Tsoi, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 1, pp. 44–52.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namm, R.V., Tsoi, G.I. A method of successive approximations for solving the quasi-variational Signorini inequality. Russ Math. 61, 39–46 (2017). https://doi.org/10.3103/S1066369X17010054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X17010054

Keywords

Navigation