Skip to main content
Log in

On well-posedness of generalized neural field equations with impulsive control

  • Brief communications
  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider nonlinear nonlocal integral equation generalizing equations typically used in mathematical neuroscience. We investigate solutions tending to zero at any fixed moment with unbounded growth of the spatial variable (these solutions correspond to normal brain functioning). We consider an impulsive control problem, which models electrical stimulation used in the presence of various diseases of central nervous system. We define suitable complete metric space, where we obtain conditions for existence, uniqueness and extendability of solution to the problem as well as continuous dependence of this solution on the impulsive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Azbelev, N. V., Maksimov, V. P. and Rakhmatullina, L. F. Introduction to the Theory of Functional Differential Equations: Methods and Applications (Hindawi Publishing Corporation, New York, 2007).

    Book  MATH  Google Scholar 

  2. Amari, S. “Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields”, Biol.Cybern. 27, 77–87 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. Coombes, S. “Waves, Bumps, and Patterns in Neural Field Theories”, Biol. Cybern. 93, 91–108 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. Blomquist, P., Wyller, J., and Einevoll, G. T. “Localized Activity Patterns in Two-Population Neuronal Networks”, Physica D 206, 180–212 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. Faye, G. and Faugeras, O. “Some Theoretical and Numerical Results for Delayed Neural Field Equations”, Physica D 239 (9), 561–578 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. Malyutina, E., Wyller, J., and Ponosov, A. “Two Bump Solutions of a Homogenized Wilson–Cowan Model With PeriodicMicrostructure”, Physica D 271 (1), 19–31 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Sompolinsky, H., Shapley, R. “NewPerspectives on the Mechanisms forOrientation Selectivity”, Curr.Opin. Neurobiol. 5, 514–522 (1997).

    Article  Google Scholar 

  8. Taube, J. S., Bassett, J. P., “Persistent Neural Activity in Head Direction Cells”, Cereb. Cortex 13, 1162–1172 (2003).

    Article  Google Scholar 

  9. Fuster, J. M., Alexander, G. “Neuron Activity Related to Short-Term Memory”, Science 173, 652–654 (1971).

    Article  Google Scholar 

  10. Wang, X-J. “Synaptic Reverberation Underlying Mnemonic Persistent Activity”, Trends Neurosci. 24, 455–463 (2001).

    Article  Google Scholar 

  11. Pinotsis, D. A., Leite, M., and Friston K. J. “On Conductance-Based Neural Field Models”, Frontiers in Comput. Neurosci. 7, 158 (2013).

    Article  Google Scholar 

  12. Tass, P. A. “A Model of Desynchronizing Deep Brain Stimulation With a Demand-Controlled Coordinated Reset of Neural Subpopulations”, Biol.Cybern. 89, 81–88 (2003).

    Article  MATH  Google Scholar 

  13. Suffczynski, P., Kalitzin, S., and Lopes Da Silva, F. H. “Dynamics of Non-Convulsive Epileptic Phenomena Modeled by a Bistable Neuronal Network”, Neurosci. 126, 467–484 (2004).

    Article  Google Scholar 

  14. Kramer, M. A., Lopour, B. A., Kirsch, H. E., and Szeri, A. J. “Bifurcation Control of a Seizing Human Cortex”, Phys. Rev. E 73, 419–428 (2006).

    Article  MathSciNet  Google Scholar 

  15. Schiff, S. J. “Towards Model-Based Control of Parkinson’s Disease”, Philos. Trans. of the Royal Soc. A: Math., Phys. and Engin. Sci. 368, 2269–2308 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruths, J., Taylor, P., Dauwels, J. “Optimal Control of an Epileptic Neural Population Model” in Proc. of the Intern. Fed. of Automat. Contr. (Cape Town, 2014).

    Google Scholar 

  17. Zhukovskii, E. S. “Continuous Dependence on Parameters of Solutions to Volterra’s Equations”, Sb.Math. 197, No. 10, 1435–1457.

  18. Burlakov, E., Zhukovskii, E., Ponosov, A. and Wyller, J. “On Well-Posedness of Generalized Neural Field EquationsWith Delay”, J. ofAbstr. Dif. Eq. and Appl. 6, 51–80 (2015).

    MathSciNet  Google Scholar 

  19. Burlakov, E., Zhukovskii, E. S. “Existence, Uniqueness and ContinuousDependence onControl of Solutions to Generalized Neural Field Equations”, Vestnik Tambov Univ. Ser. Estestv. i Teknh. Nauki 20 (1), 9–16 (2015).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. O. Burlakov or E. S. Zhukovskii.

Additional information

Original Russian Text © E.O. Burlakov, E.S. Zhukovskii, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, No. 5, pp. 82–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlakov, E.O., Zhukovskii, E.S. On well-posedness of generalized neural field equations with impulsive control. Russ Math. 60, 66–69 (2016). https://doi.org/10.3103/S1066369X16050066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X16050066

Keywords

Navigation