Skip to main content
Log in

Hardy-Goldberg operator and its conjugate one in hardy spaces and BMO \((\mathbb{T})\)

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The Hardy operator is well-known in harmonic analysis. It transforms the sequence of Fourier coefficients of a function to a the sequence of its arithmetic means. In the paper we consider the Hardy-Goldberg operator generalizing the Hardy operator and its conjugate one. We prove the boundedness of the Hardy-Goldberg operator in the real Hardy space and of its analog in the Hardy space on the disc. We establish the boundedness of the conjugate Hardy-Goldberg operator in the periodic BMO andVMO spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy, G. H. “Notes on Some Points in the Integral Calculus,” Messenger Math. 49, 149–155 (1919).

    Google Scholar 

  2. Hardy, G. H. “Notes on Some Points in the Integral Calculus,” LXVI, Messenger Math. 58, 50–52 (1928).

    Google Scholar 

  3. Bellman, R. “A Note on a Theorem of Hardy on Fourier Constants,” Bull. Amer. Math. Soc. 50, No. 10, 741–744 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  4. Loo, C.-T. “Transformations of Fourier Coefficients,” Amer. J. Math. 71, No. 2, 269–282 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  5. Konyushkov, A. A. “On Lipschitz Classes,” Izvestiya AN SSSR. Ser. Mat. 21, No. 3, 423–448 (1957) [in Russian].

    Google Scholar 

  6. Alshynbaeva E., “Transformations of Fourier Coefficients of Certain Classes of Functions,” Mathematical Notes 25(5), 332–335 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  7. Siskakis, A. G. “Composition Semi-Groups and the Cesàro Operator on H p,” J. London Math. Soc. 36, No. 1, 153–164 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  8. Siskakis, A. G. “The Cesàro Operator is Bounded on H 1,” Proc. Amer. Math. Soc. 110, No. 2, 461–462 (1990).

    MATH  MathSciNet  Google Scholar 

  9. Stempak, K. “Cesàro Averaging Operators,” Proc. Royal Soc. Edinburgh 124A, 121–126 (1994).

    Article  MathSciNet  Google Scholar 

  10. Giang, D. V., Moricz, F. “The Cesàro Operator is Bounded on the Hardy Space,” Acta Sci. Math. (Szeged) 61, No. 3–4, 535–544 (1995).

    MATH  MathSciNet  Google Scholar 

  11. Golubov, B. I. “On Boundedness of the Hardy and Bellman Operators in the Spaces H and BMO,” Numer. Funct. Anal. Optimiz. 21, No. 1, 145–158 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. Xiao, J. “Cesàro Transforms of Fourier Coefficients of L -Functions,” Proc. Amer. Math. Soc. 125, No. 12, 3613–3616 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  13. Moricz, F. “The Harmonic Cesàro and Copson Operators on the Spaces L p, 1 ≤ p ≤ ∞, H 1 and BMO,” Acta Sci. Math. (Szeged) 65, No. 1–2, 293–310 (1999).

    MATH  MathSciNet  Google Scholar 

  14. Volosivets, S. S., and Golubov, B. I. “The Hardy and Bellman Operators in Spaces Connected with H \((\mathbb{T})\) and BMO \((\mathbb{T})\),” Russian Mathematics (Iz. VUZ) 52, No. 5, 1–8 (2008).

    MATH  MathSciNet  Google Scholar 

  15. Goldberg, R. R. “Averages of Fourier Coefficients,” Pacific J.Math. 9, No. 3, 695–699 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  16. Bari, N. K. Trigonometric Series (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  17. John, F., Nirenberg, L. “On Functions of Bounded Mean Oscillation,” Comm. Pure Appl. Math. 14, No. 3, 415–426 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  18. Sarason, D. “Functions of Vanishing Mean Oscillation,” Trans. Amer. Math. Soc. 207, No. 2, 391–405 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  19. Garnett, J. Bounded analytic fucntons (Academic Press, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  20. Bergh, J. “Functions of Bounded Mean Oscillation and Hausdorff-Young Type Theorems,” Lect. Notes in Math. 1302, 130–136 (1988).

    Article  MathSciNet  Google Scholar 

  21. Timan, A. F. Approximation Theory of Functions of a Real Variable (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  22. Golubov, B. I., Efimov, A. V., and Skvortsov, B. A. Walsh Series and Transforms (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  23. Hardy, G. H., Littlewood, J. E., and Polya, G. Inequalities (Cambridge Univ. Press; 1934; In. Lit., Moscow, 1948).

    Google Scholar 

  24. Kashin, B. S., Saakyan, A. A. Orthogonal Series (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Volosivets.

Additional information

Original Russian Text © S.S. Volosivets, 2015, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, No. 2, pp. 30–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosivets, S.S. Hardy-Goldberg operator and its conjugate one in hardy spaces and BMO \((\mathbb{T})\) . Russ Math. 59, 14–24 (2015). https://doi.org/10.3103/S1066369X15020036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X15020036

Keywords

Navigation