Skip to main content
Log in

Linear equations of the Sobolev type with integral delay operator

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We establish sufficient conditions of the local and global solvability of initial value problems for a class of linear operator-differential equations of the first order in a Banach space. Equations are assumed to have a degenerate operator at the derivative and an integral delay operator. We apply methods of the theory of degenerate semigroups of operators and the contraction mapping theorem. As examples illustrating the general results we consider the evolution equation for a free surface of a filtered liquid with a delay and a linearized quasistationary system of equations for a phase field with a delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. (Springer-Verlag, 1981), Vol. 840.

    MATH  Google Scholar 

  2. A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces (Marcel Dekker Inc., New York, Basel, Hong Kong, 1999).

    MATH  Google Scholar 

  3. A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, and Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  4. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Elements of Modern Theory of Functional-Differentiall Equations. Methods and applications (Inst. of Computer Research, Moscow, 2002) [in Russian].

    Google Scholar 

  5. V. E. Fedorov and E. A. Omelchenko, “On Solvability of Some Classes of Sobolev Type Equations with Delay,” Functional Diff. Equat. 18(3–4), 187–199 (2011).

    Google Scholar 

  6. V. E. Fedorov and E. A. Omelchenko, “Inhomogeneous Degenerate Sobolev Type Equations with Delay,” Sib. Matem. Zhurn. 53(2), 418–429 (2012).

    MathSciNet  Google Scholar 

  7. A. R. Abdullaev and A. B. Burmistrova, “On a Scheme of Investigation for Resolvability of Resonance Boundary Value Problems,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 11, 14–22 (1996) [Russian Mathematics (Iz. VUZ) 40 (11), 12–20 (1996)].

    Google Scholar 

  8. A. A. Boichuk, “Construction of Solutions of Two-Point Boundary Value Problem for a Weakly Disturbed Nonlinear Systems in Critical Cases,” Ukr. Matem. Zhurn. 41(10), 1416–1420 (1989).

    MathSciNet  Google Scholar 

  9. M. Furi and M. P. Pera, “An Elementary Approach to Boundary Value Problems at Resonance,” Nonlinear Anal.: Theory,Meth. and Appl. 4(6), 1081–1089 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Landesman and A. Lazer, “Non-Linear Perturbation of Linear Elliptic Boundary Value Problems at Resonance,” J. Math. Mech. 19(7), 609–623 (1970).

    MATH  MathSciNet  Google Scholar 

  11. B. Przeradzki, “Nonlinear Boundary Value Problems at Resonance for Differential Equations in Banach Spaces,” Math. Slovaca 45(2), 139–153 (1995).

    MATH  MathSciNet  Google Scholar 

  12. V. E. Fedorov, “Degenerate Strongly Continuous Semigroups of Operators,” Algbra i Analiz 12(3), 173–200 (2000).

    Google Scholar 

  13. V. E. Fedorov, “Properties of Resolvents and Existence Conditions of Degenerated Operator Semigroups,” Vestnik Chelyabinsk. Gos. Univ. Ser. Matem., Mekh., Informatika 11(20), 12–19 (2009).

    Google Scholar 

  14. R. E. Showalter, “Partial Differential Equations of Sobolev-Galperin Type,” Pacific J. Math. 31(3), 787–793 (1963).

    Article  MathSciNet  Google Scholar 

  15. V. E. Fedorov and O. A. Ruzakova, “On Solvability of Perturbed Sobolev Type Equations,” Algebra i Analiz 20(4), 189–217 (2008).

    MathSciNet  Google Scholar 

  16. E. S. Dzektser, “Generalization of Free Boundary Groundwater Equation,” Sov. Phys. Dokl. 202(5), 1031–1033 (1972).

    Google Scholar 

  17. P. I. Plotnikov and V. N. Starovoitov, “Stefan Problem with Surface Tension as a Limiting Case for the Phase Field Model,” Differents. Uravn. 29(3), 461–471 (1993).

    MathSciNet  Google Scholar 

  18. P. I. Plotnikov and A. V. Klepacheva, “The Phase Field Equations and Gradient Flows of Marginal Functions,” Sib. Matem. Zhurn. 42(3), 651–669 (2001).

    MATH  MathSciNet  Google Scholar 

  19. V. E. Fedorov and A. V. Urazaeva, “Inverse Problem for a Class of Singular Linear Operator-Differential Equations,” in Proceedings of Voronezh Winter Mathematical Workshop (Voronezh, Voronezh Univ. Press, 2004), pp. 161–172 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Fedorov.

Additional information

Original Russian Text © V.E. Fedorov and E.A. Omel’chenko, 2014, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 1, pp. 71–81.

About this article

Cite this article

Fedorov, V.E., Omel’chenko, E.A. Linear equations of the Sobolev type with integral delay operator. Russ Math. 58, 60–69 (2014). https://doi.org/10.3103/S1066369X14010071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X14010071

Keywords and phrases

Navigation