Skip to main content

Groups with relatively small normalizers of biprimary subgroups


We study groups in which, either for any biprimary or for any nonprimary subgroup, the following condition is fulfilled: The index of the product of a subgroup and its centralizer in the normalizer of the subgroup is divisible by some prime number fixed for a group. We obtain the complete description of such groups.

This is a preview of subscription content, access via your institution.


  1. V. A. Antonov, “Locally Finite Groups with Small Normalizers,” Matem. Zametki 41(3), 296–302 (1987).

    MathSciNet  Google Scholar 

  2. V. A. Antonov and N. N. Amineva, “On Groups with Relatively Large Centralizers,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 8–17 (2003) [RussianMathematics (Iz. VUZ) 47 (7), 6–15 (2003)].

    Google Scholar 

  3. D. Gorenstein, Finite Simple Groups: An Introduction to Their Classification (Plenum Press, NY, 1982; Mir, Moscow, 1985).

    MATH  Google Scholar 

  4. B. Huppert, Endliche Groupen, 1 (Springer-Verlag, Berlin-Heidelberg-New York, 1967).

    Book  Google Scholar 

  5. R. G. Carter, Simple Groups of Lie Type (JohnWiley & Sons, London-New York-Sydney-Toronto, 1972).

    MATH  Google Scholar 

  6. S. A. Syskin, “Abstract Properties of Simple Sporadic Groups,” Usp. Mat. Nauk 35(5), 181–207 (1980).

    MathSciNet  MATH  Google Scholar 

  7. M. Hall The Theory of Groups (Macmillan, NY, 1959; In. Lit., Moscow, 1962).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. A. Antonov.

Additional information

Original Russian Text © V.A. Antonov and T.G. Nozhkina, 2013, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2013, No. 8, pp. 3–13.

About this article

Cite this article

Antonov, V.A., Nozhkina, T.G. Groups with relatively small normalizers of biprimary subgroups. Russ Math. 57, 1–9 (2013).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:

Keywords and phrases

  • group
  • subgroup
  • biprimary subgroup
  • nonprimary subgroup
  • centralizer
  • normalizer
  • index