Skip to main content
Log in

The Berger-Ebin theorem and harmonic maps and flows

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a geometrization of the Berger-Ebin theorem. We use this theorem for the study of harmonic maps and flows, in particular, Ricci solitons. We also clarify the role of a vector field in the corresponding decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Berger and D. Ebin, “Some Decompositions of Space of Symmetric Tensors on a Riemannian Manifold,” J. Differential Geometry 3, 379–392 (1969).

    MathSciNet  MATH  Google Scholar 

  2. A. Besse, Einstein Manifolds (Springer, Berlin, 1987; Mir, Moscow, 1990).

    MATH  Google Scholar 

  3. K. Yano, Differential Geometry on Complex and Almost Complex Spaces (Pergamon Press, Oxford, 1965).

    MATH  Google Scholar 

  4. R. S. Palais, Seminar on the Atiyah-Singer Index Theorem (Princeton, New Jersey, 1965; Mir, Moscow, 1970).

    MATH  Google Scholar 

  5. M. V. Smol’nikova, “On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms,” Trudy MIAN 236, 328–331 (2002).

    MathSciNet  Google Scholar 

  6. M. V. Smol’nikova, S. E. Stepanov, and I. G. Shandra, “Infinitesimal Harmonic Maps,” Izv. Vyssh. Uchebn. Zaved. Mat, No. 5, 69–75 (2004) [RussianMathematics (Iz. VUZ) 48 (5), 65–70 (2004)].

  7. S. E. Stepanov and I. G. Shandra, “Geometry of Infinitesimal Harmonic Transformations,” Annals of Global Analysis and Geometry 24, 291–299 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. K. Smolentsev “Spaces of Riemannian Metrics,” in Modern Mathematics and Its Applications: Geometry (Institute of Cybernetics, Georgia Academy of Sciences, 2005), Vol. 31, pp. 69–147.

    Google Scholar 

  9. T. Nore, “Second Fundamental Form of a Map,” Ann. Mat. Pura ed appl. 146, 281–310 (1987).

    MathSciNet  MATH  Google Scholar 

  10. S. E. Stepanov, “On the Global Theory of Some Classes of Mappings,” Annals of Global Analysis and Geometry, 13, 239–249 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. E. Stepanov, “On the Theory of Mappings of Riemannian Manifolds in the Large,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 10, 81–88 (1994) [RussianMathematics (Iz. VUZ) 38 (10), 77–84 (1994)].

  12. J. Davidov and A. G. Sergeev, “Twistor Spaces and Harmonic Maps,” Usp. Mat. Nauk 48(3), 3–96 (1993).

    MathSciNet  Google Scholar 

  13. O. Nuhaud, “Transformations Infinitesimals Harmoniques,” C. R. Acad., Paris, Ser. A 274, 573–576 (1972).

    Google Scholar 

  14. R. S. Hamilton, “The Ricci Flow on Surfaces,” Contemp. Math. 71, 237–261 (1988).

    Article  MathSciNet  Google Scholar 

  15. S. E. Stepanov and V. N. Shelepova, “Note on Ricci Solitons,” Matem. Zametki 86(3), 474–477 (2009).

    MathSciNet  Google Scholar 

  16. M. Eminenti, G. La Nave, and C. Mantegazza, “Ricci Solitons-the Equation Point of View,” Manuscripta Math. 127, 345–367 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Stepanov.

Additional information

Original Russian Text © S.E. Stepanov, 2012, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, No. 4, pp. 84–89.

About this article

Cite this article

Stepanov, S.E. The Berger-Ebin theorem and harmonic maps and flows. Russ Math. 56, 70–74 (2012). https://doi.org/10.3103/S1066369X12040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X12040093

Keywords and phrases

Navigation