Skip to main content
Log in

A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We study a nonlinear controlled functional operator equation in an ideal Banach space. We establish sufficient conditions for the global solvability for all controls from a given set, and obtain a pointwise estimate for solutions. Using upper and lower estimates of the functional component in the right-hand side of the initial equation (with a fixed operator component), we obtain majorant and minorant equations. We prove the stated theorem, assuming the monotonicity of the operator component in the right-hand side and the global solvability of both majorant andminorant equations. We give examples of the reduction of controlled initial boundary value problems to the equation under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Chernov, “Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces,” Matem. Zametki 88(2), 288–302 (2010).

    Google Scholar 

  2. A. V. Chernov, “On the Convergence of the Conditional Gradient Method in Distributed Optimization Problems,” Vestnik Nizhegorodsk. Univ. im. N. I. Lobachevskogo, No. 2, 124–130 (2010).

  3. A. V. Chernov, “A Majorant Criterion for the Total Preservation of Global Solvability of Controlled Functional Operator Equation,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 95–107 (2011) [Russian Mathematics (Iz. VUZ) 55 (3), 85–95 (2011)].

  4. V. K. Kalantarov and O. A. Ladyzhenskaya, “The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Types,” Zap. Nauchn. Semin. LOMI 69, 77–102 (1977).

    MATH  Google Scholar 

  5. V. I. Sumin, “The Features of GradientMethods for Distributed Optimal Control Problems,” Zhurn. Vychisl. Matem. i Matem. Fiz. 30(1), 3–21 (1990).

    MathSciNet  Google Scholar 

  6. V. I. Sumin, Functional Volterra Equations in the Optimal Control Theory for Distributed Systems (Nizhegorodsk. Gos. Univ., N. Novgorod, 1992), Vol. I [in Russian].

    Google Scholar 

  7. A. V. Chernov, “Volterra Functional Operator Games,” in Proceedings of the 7th All-Russian Scientific Conference with Intern. Participation ‘Mathematic Modeling and Boundary Value Problems’ Part 2, Samara, Russia, 2010 (SamGTU, Samara, 2010), pp. 289–291.

    Google Scholar 

  8. V. I. Sumin, “On Functional Volterra Equations,” Izv. Vyssh. Uchebn. Zaved., Mat., №9, 67–77 (1995) [Russian MAthematics (Iz. VUZ) 39 (9), 65–77 (1995)].

  9. V. I. Sumin, “The Controlled Functional Volterra Equations in the Lebesgue Spaces,” Vestnik Nizhegorodsk. Univ., Ser. Matem. Modelir. i Optimal’noe Upravlenie, No. 2, 138–151 (1998).

  10. V. I. Sumin and A. V. Chernov, “Sufficient Condition for the Stable Existence of Global Solutions to Volterra Operator Equations,” Vestnik Nizhegorodsk. Univ. im. N. I. Lobachevskogo, Ser. Matem. Modelir. i Optimal’noe Upravlenie, No. 1, 39–49 (2003).

  11. V. I. Sumin and A. V. Chernov, “Operators in Spaces of Measurable Functions: the Volterra Property and Quasinilpotency,” Differents. Uravneniya 34(10), 1402–1411 (1998).

    MathSciNet  Google Scholar 

  12. V. I. Sumin and A. V. Chernov, “On Some Indicators of the Quasi-Nilpotency of Functional Operators,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 2, 77–80 (2000) [Russian Mathematics (Iz. VUZ) 44 (2), 75–78 (2000)].

  13. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  14. V. V. Stepanov, Course of Differential Equations (GITTL, Moscow, 1953) [in Russian].

    Google Scholar 

  15. V. I. Blagodatskikh, “On the Differentiability of Solutions with Respect to the Initial Conditions,” Differents. Uravneniya 9(1), 2136–2140 (1973).

    Google Scholar 

  16. A. V. Chernov, “Volterra Operator Equations and Their Application in the Theory of Optimization of Hyperbolic Systems,” Candididate’s Dissertation inMathematics and Physics (NNGU, N. Novgorod, 2000).

    Google Scholar 

  17. L. Schwartz, Analyse Mathématique (Hermann, Paris, 1967; Mir, Moscow, 1972), Vol. 1.

    MATH  Google Scholar 

  18. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  19. I. P. Natanson, Theory of Functions of a Real Variable (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  20. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  21. G. Birkhoff, Lattice Theory (Amer. Math. Soc., Providence R.I., 1967; Nauka, Moscow, 1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernov.

Additional information

Original Russian Text © A.V. Chernov, 2012, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, No. 3, pp. 62–73.

About this article

Cite this article

Chernov, A.V. A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation. Russ Math. 56, 55–65 (2012). https://doi.org/10.3103/S1066369X12030085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X12030085

Keywords and phrases

Navigation