Skip to main content
Log in

The local geometry of Carnot manifolds at singular points

  • Brief Communications
  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the local geometry of Carnot manifolds in a neighborhood of a singular point in the case when horizontal vector fields are 2M-smooth. Here M is the depth of a Carnot manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gromov, “Carnot-Carathéodory Spaces Seen from Within,” in Sub-Riemannian Geometry. Progr. Math. (Birkhäuser, Basel, 1996), Vol. 144, pp. 79–323.

    Google Scholar 

  2. J. Mitchell, “On Carnot-Carathéodory Metrics,” J. Different. Geom. 21, 35–45 (1985).

    MATH  Google Scholar 

  3. M. Karmanova and S. Vodop’yanov, “Geometry of Carnot-Carathéodory Spaces, Differentiability, Coarea and Area Formulas,” in Analysis and Mathematical Physics, Trends inMathematics(Birkhäuser, Basel, 2009), pp. 233–335.

    Chapter  Google Scholar 

  4. S. K. Vodop’yanov and M. B. Karmanova, “Local Approximation Theorem for Carnot Manifolds under Minimal Smoothness,” Dokl. Phys. 413(3), 305–311 (2007).

    Google Scholar 

  5. A. V. Greshnov, “Applications of the Group Analysis of Differential Equations to Some Systems of C 1-Smooth Vector Fields,” Sib. Matem. Zhurn. 50(1), 47–62 (2009).

    MathSciNet  MATH  Google Scholar 

  6. M. B. Karmanova, “A New Approach to Investigation of the Geometry of Carnot-Carathéodory Spaces,” Dokl. Phys. 434(3), 309–314 (2010).

    MathSciNet  Google Scholar 

  7. S. V. Selivanova, “The Tangent Cone to a Regular Quasimetric Carnot-Carathéodory Space,” Dokl. Phys. 425(5), 595–599 (2009).

    MathSciNet  Google Scholar 

  8. S. V. Selivanova, “The Tangent Cone to a Quasimetric Space with Dilations,” Sib. Matem. Zhurn. 51(2), 388–403 (2010).

    MathSciNet  Google Scholar 

  9. A. Bellaïche, “The Tangent Space in Sub-Riemannian Geometry,” in Sub-Riemannian Geometry. Progr. Math. (Birkhäuser, Basel, 1996), Vol. 144, pp. 1–78.

    Google Scholar 

  10. H. Hermes, “Nilpotent and High-Order Approximations of Vector Field Systems,” SIAM Rev. 33(2), 238–264 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. P. Rotshild and E. M. Stein, “Hypoelliptic Differential Operators and Nilpotent Groups,” Acta Math. 137(3–4), 247–320 (1976).

    Article  MathSciNet  Google Scholar 

  12. F. Jean, “Uniform Estimation of Sub-Riemannian Balls,” J. Dyn. and Control Syst. 7(4), 473–500 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. A. Agrachev and Yu. L. Sachkov, Geometric Control Theory (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  14. L. Hörmander, “Hypoelliptic Second Order Differential Equations,” ActaMath. 119(3–4), 147–171 (1967).

    MATH  Google Scholar 

  15. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the assistance of Timothy S.Murphy (Princeton University Press, NJ, Princeton, 1993).

    MATH  Google Scholar 

  16. M. Christ, A. Nagel, E. M. Stein, and S. Wainger, “Singular and Maximal Radon Transforms: Analysis and Geometry,” Ann. Math. Ser. 2 150(2), 489–577 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. K. Rashevskii, “Joinability of Any Two Points of a Completely Nonholonomic Space by Admissible Curve,” Uchen.Zap.Mosk. Gos. Ped. Inst. im. K. Libknechta,Ser. Fiz.-Mat. 3(2), 83–94 (1938).

    Google Scholar 

  18. W. L. Chow, “Über Systeme von Linearen Partiellen Differentialgleichungen erster Ordnung,” Math. Ann. 117, 98–105 (1939).

    Article  MathSciNet  Google Scholar 

  19. M. Gromov, “Groups of Polynomial Growth and Expanding Maps. Appendix by Jacques Tits,” Inst. Hautes Études Sci. Publ.Math. 53, 53–73 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Yu. Burago, Yu. D. Burago, and S. V. Ivanov, A Course in Metric Geometry (Institute of Computer Science, Moscow-Izhevsk, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Selivanova.

Additional information

Original Russian Text © S.V. Selivanova, 2011, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, No. 8, pp. 94–97.

Submitted by S.K. Vodop’yanov

About this article

Cite this article

Selivanova, S.V. The local geometry of Carnot manifolds at singular points. Russ Math. 55, 81–84 (2011). https://doi.org/10.3103/S1066369X11080135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X11080135

Keywords and phrases

Navigation