Skip to main content

A theorem on properties of sample functions of a random field and generalized random fields

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We prove a theorem on the equivalence of some properties of a random field defined in terms of sample functions. We apply this theorem for studying generalized random fields.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. G. Smolyanov and E. T. Shavgulidze, “Feynman Formulas for Solutions of Infinitesimal Schrödinger Equations with Polynomial Potentials,” Dokl. Phys. 390(3), 321–324 (2003).

    MathSciNet  Google Scholar 

  2. 2.

    A. D. Venttsel’, A Course in the Theory of Random Processes (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. 3.

    P. Halmos, Measure Theory (Springer-Verlag, New York, 1950; Inost. Lit.,Moscow, 1953).

    MATH  Google Scholar 

  4. 4.

    O. G. Smolyanov, “On Measurability and Nonmeasurability of Subsets of Some Functional Spaces with Measure,” Vestn. Moskovsk. Un-ta. Ser. 1 Matem.,Mekhan., No. 4, 72–84 (1966).

  5. 5.

    O. G. Smolyanov and E. T. Shavgulidze, Continual Integrals (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  6. 6.

    K. Ito, Stochastic Processes, Vol. 1 (Inost. Lit., Moscow, 1960) [Russian translation].

    Google Scholar 

  7. 7.

    R. A. Minlos, “Generalized Random Fields,” Mathematical Encyclopaedia (Soviet Encyclopaedia, Moscow, 1985), Vol. 5, P. 18.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. L. Starodubov.

Additional information

Original Russian Text © S.L. Starodubov, 2011, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, No. 7, pp. 48–56.

About this article

Cite this article

Starodubov, S.L. A theorem on properties of sample functions of a random field and generalized random fields. Russ Math. 55, 40–46 (2011).

Download citation

Keywords and phrases

  • random fields
  • sample functions
  • total transform of measure
  • cylindric set algebras
  • generalized random field