The Riemann function for one equation in an n-dimensional space

Abstract

We construct the explicit Riemann function for a special partial differential equation with leading partial derivative in the n-dimensional space.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. K. Fage, “The Cauchy Problem for Bianchi’s Equation,” Matem. Sborn. 45(3), 281–322 (1958).

    MathSciNet  Google Scholar 

  2. 2.

    A. P. Soldatov and M. Kh. Shkhanukov, “Boundary-Value Problems with Samarskii General Nonlocal Condition for Pseudoparabolic Equations of High Order,” Sov. Phys. Dokl. 297(3), 547–552 (1987).

    MathSciNet  Google Scholar 

  3. 3.

    V. I. Zhegalov and V. A. Sevast’yanov, “The Goursat Problem in the Four-Dimensional Space,” Differents. Uravn. 32(10), 1429–1430 (1996).

    MathSciNet  Google Scholar 

  4. 4.

    V. A. Sevast’yanov, “The Riemann Method for a Three-Dimensional Hyperbolic Equation of Third Order,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 69–73 (1997) [Russian Mathematics (Iz. VUZ) 41 (5), 66–70 (1997)].

    MathSciNet  Google Scholar 

  5. 5.

    V. A. Sevast’yanov, “One Case of the Cauchy Problem,” Differents. Uravn. 34(12), 1706–1707 (1998).

    MathSciNet  Google Scholar 

  6. 6.

    V. I. Zhegalov and E. A. Utkina, “On a Pseudoparabolic Equation of the Third-Order,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 73–76 (1999) [Russian Mathematics (Iz. VUZ) 43 (10), 70–73 (1999)].

    MathSciNet  Google Scholar 

  7. 7.

    V. I. Zhegalov and E. A. Utkina, “The Goursat Problem for a Three-Dimensional Equation with Higher Derivative,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 11, 77–81 (2001) [Russian Mathematics (Iz. VUZ) 45 (11), 74–78(2001)].

    MathSciNet  Google Scholar 

  8. 8.

    V. I. Zhegalov and A. N. Mironov, Differential Equations with Major Partial Derivatives (Kazans Math. Soc., Kazan, 2001) [in Russian].

    Google Scholar 

  9. 9.

    V. I. Zhegalov and A. N. Mironov, “On Cauchy Problems for Two Partial Differential Equations,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 23–30 (2002).

    MathSciNet  Google Scholar 

  10. 10.

    V. I. Zhegalov and E. A. Utkina, “On a Fourth-Order Partial Differential Equation with Three Independent Variables,” Differents. Uravn. 38(1), 93–97 (2002).

    MathSciNet  Google Scholar 

  11. 11.

    A. N. Mironov, “On the Cauchy Problem in the Four-Dimensional Space,” Differents. Uravn. 40(6), 844–847 (2004).

    MathSciNet  Google Scholar 

  12. 12.

    A. N. Mironov, “The Riemann Solution Method for the Cauchy Problem,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 34–44 (2005) [Russian Mathematics (Iz. VUZ) 49 (2), 32–41 (2005)].

    MathSciNet  Google Scholar 

  13. 13.

    A. N. Mironov, “The Riemann Method for Equations with Leading Partial Derivative in Rn,” Sib. Matem. Zhurn. 47(3), 584–594 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    O. Dzhokhadze and B. Midodashvili, “High Order Spatial Hyperbolic Equations with Dominated Lower Terms,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 6, 25–34 (2006) [Russian Mathematics (Iz. VUZ) 50 (6), 24–31 (2006)].

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Mironov.

Additional information

Original Russian Text © A.N. Mironov, 2010, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, No. 3, pp. 23–27.

About this article

Cite this article

Mironov, A.N. The Riemann function for one equation in an n-dimensional space. Russ Math. 54, 19–23 (2010). https://doi.org/10.3103/S1066369X10030047

Download citation

Key words and phrases

  • Riemann method
  • equation with leading partial derivative