Skip to main content
Log in

To the theory of operator monotone and operator convex functions

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from ℝ+ into ℝ+ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Osaka, S. D. Silvestrov, and J. Tomiyama, “Monotone Operator Functions on C*-Algebras,” Int. J.Math. 16(2), 181–196 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Hansen, G. Ji, and J. Tomiyama, “Gaps between Classes of Matrix Monotone Functions,” Bull. London Math. Soc. 16(1), 53–58 (2004).

    Article  MathSciNet  Google Scholar 

  3. J. Bendat and S. Sherman, “Monotone and Convex Operator Functions,” Trans. Amer. Math. Soc. 79(1), 58–71 (1955).

    Article  MathSciNet  Google Scholar 

  4. M. Takesaki, Theory of Operator Algebras (Springer-Verlag, New York, 1979), Vol. 1.

    MATH  Google Scholar 

  5. N. E. Wegge-Olsen, K-Theory and C*-Algebras. A Friendly Approach (Oxford University Press, New York, 1993), Vol. 1.

    Google Scholar 

  6. S. Sakai, C*-Algebras and W*-Algebras (Springer-Verlag, New York, 1971).

    Google Scholar 

  7. G. Ji, and J. Tomiyama, “On Characterization of Commutativity of C*-Algebras,” Proc. Amer. Math. Soc. 131(12), 3845–3849(2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Takesaki, Theory of Operator Algebras (Springer-Verlag, New York, 2003), Vol. II.

    Google Scholar 

  9. A. N. Sherstnev, Methods of Bilinear Forms in Noncommutative Theory of Measure and Integral (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  10. G. K. Pedersen and M. Takesaki, “The Radon-Nikodym Theorem for von Neumann Algebras,” Acta Math. 130(1-2), 53–87(1973).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Trung Hoa.

Additional information

Original Russian Text © Dinh Trung Hoa and O.E. Tikhonov, 2010, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, No. 3, pp. 9–14.

About this article

Cite this article

Hoa, D.T., Tikhonov, O.E. To the theory of operator monotone and operator convex functions. Russ Math. 54, 7–11 (2010). https://doi.org/10.3103/S1066369X10030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X10030023

Key words and phrases

Navigation