Skip to main content
Log in

Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider the problem on the existence of forced oscillations in nonlinear objects governed by differential inclusions. We propose certain modifications of the methods of generalized and integral guiding functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Krasnosel’skii, Translation Operator for Trajectories of Differential Equations (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. M. A. Krasnosel’skii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. M. A. Krasnosel’skii and A. I. Perov, “On an Existence Principle for Bounded, Periodic, and Almost Periodic Solutions of Systems of Ordinary Differential Equations,” Sov. Phys. Dokl. 12(2), 235–238 (1958).

    MathSciNet  Google Scholar 

  4. Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multi-Valued Maps and Differential Inclusions (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  5. K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin-New York, 1992).

    MATH  Google Scholar 

  6. L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings (Kluwer Acad. Publ., Dordrecht-Boston-London, 1999).

    MATH  Google Scholar 

  7. F. S. De Blasi, L. Górniewicz, and G. Pianigiani, “Topological Degree and Periodic Solutions of Differential Inclusions,” Nonlinear Anal. 37, 217–245 (1999).

    Article  MathSciNet  Google Scholar 

  8. J. Mawhin, J. R. Ward jr., “Guiding-Like Functions for Periodic or Bounded Solutions of Ordinary Differential Equations,” Discrete and Continuous Dynamical Systems 8(1), 39–54 (2002).

    MATH  MathSciNet  Google Scholar 

  9. J. Mawhin and H. B. Thompson, “Periodic or Bounded Solutions of Caratheodory Systems of Ordinary Differential Equations,” J. Dyn. Diff. Eq. 15(2–3), 327–334 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Filippakis, L. Gasinski, and N. S. Papageorgiou, “Nonsmooth Generalized Guiding Functions for Periodic Differential Inclusions,” Nonlinear Diff. Eq. Appl. 13(1), 43–66 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces (Walter de Gruyter, Berlin-New York, 2001).

    MATH  Google Scholar 

  12. J. L. Mawhin, “Topological Degree Methods in Nonlinear Boundary Value Problems,” in CBMS Regional Conf. Ser. Math. (Amer.Math. Soc. Providence, R. I, 1977), No. 40.

    Google Scholar 

  13. T. Pruszko, “A Coincidence Degree for L-compact Convex-Valued Mappings and its Application to the Picard Problem for Orientor Fields,” Bull. Acad. Polon. Sci. Sér. Sci. Math. 27(11–12), 895–902 (1979).

    MATH  MathSciNet  Google Scholar 

  14. T. Pruszko, “Topological Degree Methods in Multi-Valued Boundary Value Problems,” Nonlinear Anal.: Theory,Meth. and Appl. 5(9), 959–973 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Tarafdar and S. K. Teo, “On the Existence of Solutions of the Equation ℒxNx and a Coincidence Degree Theory,” J. Austral.Math. Soc. A28(2), 139–173 (1979).

    Article  MathSciNet  Google Scholar 

  16. S.V. Kornev and V. V. Obukhovskii, “On Some Versions of Topological Degree Theory for Nonconvex-Valued Multimaps,” in Sbornik trudov Matem. fakult. Voronezhsk. Univ. (Voronezh, 2004), No. 8, pp. 56–74.

  17. F. Clarke, Optimization and Nonsmooth Analysis (JohnWiley & Sons, New York, 1983; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  18. N. A. Bobylev, S.V. Emel’yanov, and S. K. Korovin, Geometric Methods in Variational Problems (Magistr, Moscow, 1998) [in Russian].

    Google Scholar 

  19. V. F. Dem’yanov and L. V. Vasil’ev, Nondifferential Optimization (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  20. S. V. Emel’yanov, S. K. Korovin, N. A. Bobylev, and A. V. Bulatov, Homotopies of Extremal Problems (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  21. A. Fonda, “Guiding Functions and Periodic Solutions to Functional Differential Equations,” Proc. Amer. Math. Soc. 99(1), 79–85 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Kornev and V. Obukhovskii, “On Some Developments of the Method of Integral Guiding Functions,” Functional Diff. Eq. 12(3–4), 303–310 (2005).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kornev.

Additional information

Original Russian Text © S.V. Kornev and V.V. Obukhovskii, 2009, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, No. 5, pp. 23–32.

About this article

Cite this article

Kornev, S.V., Obukhovskii, V.V. Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions. Russ Math. 53, 19–27 (2009). https://doi.org/10.3103/S1066369X0905003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X0905003X

Key words and phrases

Navigation