Skip to main content
Log in

A survey of average case complexity for linear multivariate problems

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We survey recent results on the average case complexity for linear multivariate problems. Our emphasis is on problems defined on spaces of functions of d variables with large d. We present the sharp order of the average case complexity for a number of linear multivariate problems as well as necessary and sufficient conditions for the average case complexity not to be exponential in d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Amer.Math. Soc. 68, 337–404 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Beck and W. W. Chen, Irregularities of Distributions, Cambridge Tracts in Mathematics (Cambridge University Press, 1987), Vol. 89.

  3. B. Chazelle, The Discrepancy Method: Randomness and Complexity (Cambridge Univ. Press, 2002).

  4. Z. Ciesielski, “On Lévy’s Brownian Motion with Several-Dimensional Time,” in Lecture Notes in Mathematics, Ed. by A. Dold and B. Eckman (Springer, 1975), Vol. 472, pp. 29–56.

  5. D. P. Dobkin and D. P. Mitchell, “Random-Edge Discrepancy of Suppersampling Patterns,” in Graphics Interface’93 (York, Ontario, 1993).

  6. M. Drmota and R. F. Tichy, “Sequences, Discrepancies and Applications,” in Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1997), Vol. 1651.

    Google Scholar 

  7. F. J. Hickernell, G. W. Wasilkowski, and H. Woźniakowski, “Tractability of Linear Multivariate Problems in the Average Case Setting,” in Monte Carlo and Quasi-Monte Carlo Methods 2006, Ed. by A. Keller, S. Heinrich, and H. Niederreiter (Springer, 2008), pp. 359–381.

  8. F. J. Hickernell, and H. Woźniakowski, “Integration and Approximation in Arbitrary Dimension,” Advances in Computational Mathematics 12, 25–58 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Hinrichs, E. Novak, and J. Vybiral, “Linear Information Versus Function Evaluations for L 2-Approximation” (J. Approx. Theory, in press).

  10. G. S. Kimeldorf and G. Wahba, “A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines,” Ann.Math. Stat. 41, 495–502 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. S. Kimeldorf and G. Wahba, “Spline Functions and Stochastic Processes,” Sankhya Ser. A 32, 173–180 (1970).

    MATH  MathSciNet  Google Scholar 

  12. F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski, “Multivariate L -Approximation in the Worst Case Setting Over Reproducing Kernel Hilbert Spaces,” J. Approx. Theory 152, 135–160 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Y. Kuo, G.W. Wasilkowski, and H. Woźniakowski, “On the Power of Standard Information for Multivariate Approximation in the Worst Case Setting,” (J. Approx. Theory, in press).

  14. F. M. Larkin, “Gaussian Measure in Hilbert Space and Application in Numerical Analysis,” Rocky Mount. J. Math. 2, 372–421 (1972).

    Article  Google Scholar 

  15. P. Lévy, Processus Stochastique et Mouvement Brownien (Gauthier-Villars, Paris, 1948).

    Google Scholar 

  16. Y. Li, “Applicability of Smolyak’s Algorithm to Certain Banach Spaces of Multivariate Functions,” J. of Complexity 18, 792–814 (2002).

    Article  MATH  Google Scholar 

  17. J. Matoušsek, “Geometric Discrepancy,” in Algorithms and Combinatorics (Springer-Verlag, 1999), Vol. 18.

  18. C. A. Micchelli and G. Wahba, “Design Problems for Optimal Surface Interpolation,” in Approximation Theory and Applications, Ed. by Z. Zeigler (Academic Press, New York, 1981), pp. 329–347.

    Google Scholar 

  19. R. v. Mises, “Zur mechanischen Quadratur,” Z. Angew.Math. Mech. 13, 53–56 (1933).

    Article  Google Scholar 

  20. G. M. Molchan, “On Some Problems Concerning BrownianMotion in L’evy’s Sense,” Theory Probab. Appl. 12, 682–690 (1967).

    Article  MATH  Google Scholar 

  21. H. Niederreiter, “Random Number Generation and Quasi-Monte CarloMethods,” CBMS-NSF Reg. Conf. Series Appl.Math. (SIAM, Philadelphia, 1992), Vol. 63.

    Google Scholar 

  22. E. Novak, “Deterministic and Stochastic Error Bounds in Numerical Analysis,” in Lecture Notes in Mathematics (Springer, 1988), Vol. 1349.

  23. E. Novak and H. Woźniakowski, “Intractability Results for Integration and Discrepancy,” J. of Complexity 17, 388–441 (2001).

    Article  MATH  Google Scholar 

  24. E. Novak and H. Woźniakowski, “Tractability of Multivariate Problems” (European Mathematical Society, Zürich, 2008), Vol. 6 (to appear).

    MATH  Google Scholar 

  25. A. Papageorgiou and G.W. Wasilkowski, “On the Average Case Complexity of Multivariate Problems,” J. of Complexity 6, 1–23 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Paskov, “Average Case Complexity of Multivariate Integration for Smooth Functions,” J. of Complexity 9, 291–321 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Plaskota, “A Note on Varying Cardinality in the Average Case Setting,” J. of Complexity 9, 458–470 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Plaskota, Noisy Information and Computational Complexity (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  29. L. Plaskota, K. Ritter, and G. W. Wasilkowski, “Average Case Complexity of Weighted Approximation and Integration Over ℝ+,” J. of Complexity 18, 517–544 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Plaskota, K. Ritter, and G. W. Wasilkowski, “Average Case Complexity of Weighted Integration and Approximation Over ℝd for Isotropic Weight,” in Monte Carlo and Quasi-Monte Carlo Methods 2000, Ed. by K.-T. Fang, F. J. Hickernell, and H. Niederreiter (Springer, 2002), pp. 446–459.

  31. K. Ritter, “Average-Case Analysis of Numerical Problems,” in Lecture Notes in Mathematics (Springer, 2000), Vol. 1733.

  32. K. Ritter and G. W. Wasilkowski, “Integration and L 2-Approximation: Average Case Complexity with Isotropic Wiener Measure for Smooth Functions,” Rocky Mountain J. Math. 26, 1541–1557 (1997).

    Article  MathSciNet  Google Scholar 

  33. K. Ritter and G. W. Wasilkowski, “On the Average Case Complexity of Solving Poisson Equations,” in Lectures in Applied Mathematics, Ed. by J. Renegar, M. Shub, and S. Smale, 32, pp. 677–687 (1996).

  34. K. Ritter, G. W. Wasilkowski, and H. Woźniakowski, “On Multivariate Integration for Stochastic Processes,” in Numerical Integration IV, Ed. by H. Brass and G. Hämmerlin (Birkhäuser, Basel, 1993), International Series on Numerical Mathematics, 112, pp. 331–347.

    Google Scholar 

  35. K. Ritter, G. W. Wasilkowski, and H. Woźniakowski, “Multivariate Integration and Approximation for Random Fields Satisfying Sacks-Ylvisaker Conditions,” The Annals of Applied Probability 5, 518–540 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Sacks and D. Ylvisaker, “Design for Regression Problems with Correlated Errors III,” Ann. Math. Stat. 41, 2057–2074 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Sacks and D. Ylvisaker, “Statistical Design and Integral Approximation,” in Proceedings of 12th Bienn. Semin. Can. Math. Congr. (1970), pp. 115–136.

  38. I. H. Sloan and S. Joe, Lattice Methods for Multiple Integration (Oxford University Press, 1994).

  39. S. A. Smolyak, “Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions,” Sov. Phys. Dokl. 4, 240–243 (1963).

    Google Scholar 

  40. A. V. Sul’din, “Wiener Measure and its Applications to Approximation Methods. I,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 145–158 (1959) [in Russian].

  41. A. V. Sul’din, Wiener Measure and its Applications to Approximation Methods. II,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 4, 165–179 (1960) [in Russian].

  42. S. Tezuka, Uniform Random Numbers: Theoryand Practice (Kluwer Academic Publishers, Boston, 1995).

    Google Scholar 

  43. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, “Average Case Optimality for Linear Problems,” J. Theor. Comput. Sci. 29, 1–24 (1984).

    Article  Google Scholar 

  44. J. F. Traub, G.W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity (Academic Press, New York, 1988).

    MATH  Google Scholar 

  45. G. Wahba, “On the Regression Design Problem of Sacks and Ylvisaker,” Ann. Math. Stat. 42, 1035–1043 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Wahba, “SplineModels for Observational Data,” SIAM-NSF Regional Conference Series in Appl. Math. (1990), Vol. 59.

  47. G.W. Wasilkowski, “Information of Varying Cardinality,” J. of Complexity 2, 204–228 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  48. G. W. Wasilkowski, “Optimal Algorithms for Lnear Problems with Gaussian Measures,” Rocky Mount. J. Math. 16, 727–749 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  49. G. W. Wasilkowski, “Integration and Approximation of Multivariate Functions: Average Case Complexity with Isotropic Wiener Measure,” Bull. Amer. Math. Soc. 28, 308–314 (1993). Full version in: J. of Approx. Theory 77, 212–227 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  50. G. W. Wasilkowski and F. Gao, “On the Power of Adaptive Information for Functions with Singularities,” Math. Comp. 58, 285–304 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  51. G. W. Wasilkowski and H. Woźniakowski, “Can Adaption Help to the Average?,” Numer.Math. 44, 169–190 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  52. G.W. Wasilkowski and H. Woźniakowski, “Explicit Cost Bounds for Multivariate Tensor Product Problems,” J. of Complexity 11, 1–56 (1995).

    Article  MATH  Google Scholar 

  53. G. W. Wasilkowski and H. Woźniakowski, “Weighted Tensor-Product Algorithms for Linear Multivariate Problems,” J. of Complexity 15, 402–447 (1999).

    Article  MATH  Google Scholar 

  54. G. W. Wasilkowski and H. Woźniakowski, “Finite-Order Weights Imply Tractability of Linear Multivariate Problems,” J. Approx. Theory 130, 57–77 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  55. G. W. Wasilkowski and H. Woźniakowski, “Polynomial-Time Algorithms for Multivariate Problems with Finite-Order Weights; Average Case Setting,” (to appear in: Foundations of Computational Mathematics, 2008).

  56. H. Woźniakowski, “Average Case Complexity of Multivariate Integration,” Bull. Amer. Math. Soc. 24, 185–194 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Woźniakowski, “Average Case Complexity of Linear Multivariate Problems, Part 1: Theory, Part 2: Applications,” J. of Complexity 8, 337–372, 373–392 (1992).

    Article  MATH  Google Scholar 

  58. D. Ylvisaker, “Designs on Random Fields,” in Survey of Statistical Design and Linear Models, Ed. by J. Srivastava (North-Holland, Amsterdam, 1975), pp. 593–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Wasilkowski.

Additional information

Dedicated to the 50th anniversary of the journal.

The text was submitted by the authors in English.

About this article

Cite this article

Wasilkowski, G.W., Woźniakowski, H. A survey of average case complexity for linear multivariate problems. Russ Math. 53, 1–14 (2009). https://doi.org/10.3103/S1066369X0904001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X0904001X

Key words and phrases

Navigation