Skip to main content
Log in

A nonlinear descent method for a variational inequality on a nonconvex set

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a generalized variational inequality problem which involves the integrable cost mapping and a nonsmooth mapping with convex components. We propose a new gradient-type method which determines a stepsize by using the smooth part of the cost function. Thus, the method does not utilize analogs of derivatives of nonsmooth functions. We show that its convergence does not require additional assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Isac, Complementarity Problems (Springer-Verlag, Berlin, 1992).

    MATH  Google Scholar 

  2. J.-C. Yao, “Existence of Generalized Variational Inequalities,” Oper. Res. Lett. 15(1), 35–40 (1995).

    Article  Google Scholar 

  3. I. V. Konnov, “Combined Relaxation Methods for Generalized Variational Inequalities,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 12, 46–64 (2001) [RussianMathematics (Iz. VUZ) 45 (12), 43–51 (2001)].

  4. E. A. Nurminskii and N. B. Shamrai, “Method of Local Convex Majorants for Variational-Like Inequalities,” Comp. Maths. and Math. Phys. 47(3), 355–363 (2007).

    MATH  MathSciNet  Google Scholar 

  5. B. Martos, Nonlinear Programming. Theory and Methods (Akad émiai Kiado, Budapest, 1975).

    MATH  Google Scholar 

  6. A. G. Sukharev, A. V. Timokhov, and V. V. Fedorov, A Course in Optimization Methods (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  7. J. V. Burke, “Descent Methods for Composite Nondifferentiable Optimization Problems,” Mathem. Progr. 33(3), 260–279 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Jeyakumar and X. Q. Yang, “Convex Composite Minimization with C 1,1 Functions,” J. Optimiz. Theory Appl. 86(3), 631–648 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  9. H.W. Kuhn, “On a Theorem of Wald,” in Linear Inequalities and Related Topics, Ed. by H.W. Kuhn and A.W. Tucker (Princeton Univ. Press, Princeton, 1956), pp. 265–273.

    Google Scholar 

  10. I. V. Konnov, “Dual Approach to One Class of Mixed Variational Inequalities,” Comput. Maths. Math. Phys. 42(9), 1276–1288 (2002).

    MathSciNet  Google Scholar 

  11. I. V. Konnov, Equilibrium Models and Variational Inequalities (Elsevier, Amsterdam, 2007).

    MATH  Google Scholar 

  12. V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  13. I. V. Konnov, Methods of Nondifferentiable Optimization (Kazan University Press, Kazan, 1993) [in Russian].

    Google Scholar 

  14. P. D. Panagiotopoulos, Inequality Problems in Mechanics and Their Applications (Birkhauser, Boston, 1985).

    Google Scholar 

  15. W. W. Hogan, “Point-to-Set Maps in Mathematical Programming,” SIAM Review 15(3), 591–603 (1973).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Konnov.

Additional information

Original Russian Text © I.V. Konnov, 2009, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, No. 1, pp. 66–75.

About this article

Cite this article

Konnov, I.V. A nonlinear descent method for a variational inequality on a nonconvex set. Russ Math. 53, 56–63 (2009). https://doi.org/10.3103/S1066369X09010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X09010034

Key words

Navigation