Skip to main content
Log in

The Luzin approximation of functions from classes W p α on metric spaces with measure

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove an analog of the Luzin theorem on correction for spaces of the Sobolev type on an arbitrary metric space with a measure, satisfying the doubling condition. The correcting function belongs to the Hölder class and approximates a given function in the metrics of the initial space. Dimensions of exceptional sets are evaluated in terms of Hausdorff capacities and volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Federer, “Surface Area,” II, Trans. Amer. Math. Soc. 55, 438–456 (1944).

    Article  MathSciNet  Google Scholar 

  2. H. Whitney, “On Totally Differentiable and Smooth Functions,” Pacific J. Math. 1, 143–159 (1951).

    MATH  MathSciNet  Google Scholar 

  3. A. P. Calderon and A. Zygmund “Local Properties of Solutions of Elliptic Partial Differential Equations,” Studia Math. 20, 171–225 (1961).

    MATH  MathSciNet  Google Scholar 

  4. T. Bagby and W. P. Ziemer, “Pointwise Differentiability and Absolute Continuity,” Trans. Amer. Math. Soc. 191, 129–148 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  5. F.-C. Liu, “A Lusin Type Property of Sobolev Functions,” Indiana Univ. Math. J. 26, 645–651 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Michael and W. P. Ziemer, “A Lusin Type Approximation of Sobolev Functions by Smooth Functions,” Contemp. Math. 42, 135–167 (1985).

    MathSciNet  Google Scholar 

  7. D. Swanson, “Pointwise Inequalities and Approximation in Fractional Sobolev Spaces,” Studia Math. 149, 147–174 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Bojarski, P. Hajłasz, and P. Strzelecki, “Improved C k,λ-Approximation of Higher Order Sobolev Functions in Norm and Capacity,” Indiana Univ. Math. J. 51(3), 507–540 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Stein, Singular Integrals and Differential Properties of Functions (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).

    Google Scholar 

  10. L. I. Hedberg and Yu. Netrusov, “An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation,” Memoirs of the Amer. Math. Soc. 882, (2007).

  11. P. Hajłasz, “Sobolev Spaces on an Arbitrary Metric Space,” Potential Anal. 5(4), 403–415 (1996).

    MathSciNet  MATH  Google Scholar 

  12. A. P. Calderon, “Estimates for Singular Integral Operators in Terms of Maximal Functions,” Studia Math. 44, 563–582 (1972).

    MATH  MathSciNet  Google Scholar 

  13. P. Hajłasz and J. Kinnunen, “Hölder Quasicontinuity of Sobolev Functions on Metric Spaces,” Revista Mat. Iberoamericana 14(3), 601–622 (1998).

    MATH  Google Scholar 

  14. J. Hu, “A Note on Hajłasz-Sobolev Spaces on Fractals,” J. Math. Anal. Appl. 280(1), 91–101 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Yang, “New Characterization of Hajłasz-Sobolev Spaces on Metric Spaces,” Science in China, Ser. 1. 46(5), 675–689 (2003).

    Article  MATH  Google Scholar 

  16. K. I. Oskolkov, “Approximative Properties of Summable Functions on Sets of Complete Measure,” Matem. Sborn. 103(4), 563–589 (1977).

    MathSciNet  Google Scholar 

  17. V. I. Kolyada, “Estimates of Maximal Functions Measuring Local Smoothness,” Anal. Math. 25, 277–300 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. R. R. Coifman and G. Weiss, Analyse Harmonique Noncommutative sur Certains Espaces Homogénes, Lect. Notes Math. 242, Springer-Verlag (1971).

  19. I. A. Ivanishko, “Generalized Sobolev Classes on Metric Spaces with Measure,” Matem. Zametki 77(6), 937–940 (2005).

    MathSciNet  Google Scholar 

  20. J. Kinnunen and O. Martio, “The Sobolev Capacity on Metric Spaces,” Ann. Acad. Sci. Fenn. 21, 367–382 (1996).

    MATH  MathSciNet  Google Scholar 

  21. M. A. Prokhorovich, “Capacities and Lebesgue Points for Fractional Hajlasz-Sobolev Classes on Metric Spaces with Measure,” Vestsi Belar. Akad. Nauk, Ser. fiz.-mat. navuk, No. 1, 19–23 (2006).

  22. J. Kinnunen and V. Latvala, “Lebesgue Points for Sobolev Functions on Metric Spaces,” Revista Mat. Iberoamericana 18(3), 685–700 (2002).

    MATH  MathSciNet  Google Scholar 

  23. M. A. Prokhorovich, “The Hausdorff Dimensionality of the Lebesgue Set for Classes W p α on Metric Spaces,” Matem. Zametki 82(1), 99–107 (2007).

    MathSciNet  Google Scholar 

  24. A. P. Calderon and R. Scott, “Sobolev Type Inequalities for p > 0,” Studia Math. 62, 75–92 (1978).

    MATH  MathSciNet  Google Scholar 

  25. R. DeVore and R. Sharpley, “Maximal Functions Measuring Smoothness,” Memoirs. Amer. Math. Soc. 47(293), (1984).

  26. V. G. Krotov, “Weight L p-Inequalities for Sharp Maximal Functions on Metric Spaces with Measure,” Izv. Akad. Nauk Armenii, Mat. 41(2), 25–42 (2006).

    MathSciNet  Google Scholar 

  27. R. A. Macias and C. Segovia, “A Decomposition into Atoms of Distributions on Spaces of Homogeneous Type,” Advances Math. 33(3), 271–309 (1979).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krotov.

Additional information

Dedicated to the memory of Petr Lavrent’evich Ul’yanov

Original Russian Text © V.G. Krotov and M.A. Prokhorovich, 2008, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, No. 5, pp. 55–66.

About this article

Cite this article

Krotov, V.G., Prokhorovich, M.A. The Luzin approximation of functions from classes W p α on metric spaces with measure. Russ Math. 52, 47–57 (2008). https://doi.org/10.3103/S1066369X0805006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X0805006X

Key words

Navigation