Skip to main content
Log in

Bases of rearrangement invariant spaces

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We prove that if E is a rearrangement-invariant space, then a boundedly complete basis exists in E, if and only if one of the following conditions holds: 1) E is maximal and EL 1[0, 1]; 2) a certain (any) orthonormal system of functions from L [0, 1], possessing the properties of the Schauder basis for the space of continuous on [0, 1] functions with the norm L , represents a boundedly complete basis in E. As a corollary, we state the following assertion: Any (certain) orthonormal system of functions from L [0, 1], possessing the properties of the Schauder basis for the space of continuous on [0, 1] functions with the norm L , represents a spanning basis in a separable rearrangement-invariant space E, if and only if the adjoint space E* is separable. We prove that in any separable rearrangement-invariant space E the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable rearrangement-invariant space, if and only if at least one of the Boyd indices of this space is trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  2. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  3. B. S. Kashin and A. A. Saakyan, Orthogonal Series (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  4. I. Novikov and E. Semenov Haar Series and Linear Operators (Kluver Acad. Publ., Dordrecht, 1997).

    MATH  Google Scholar 

  5. P. L. Uljanov, “Haar Series and Related Questions,” Alfred Haar Mem. Conf., Budapest, 49 57–95 (1985).

    MathSciNet  Google Scholar 

  6. B. I. Golubov, “Series in the Haar System,” in Itogi Nauki i Tekhniki, Matem. Analiz (VINITI, Moscow, 1971), pp. 109–146.

    Google Scholar 

  7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  8. A. M. Olevskii, “Fourier Series and Lebesque Functions,” Usp. Mat. Nauk 22, 236–239 (1967).

    MathSciNet  Google Scholar 

  9. V. M. Kadets and M. M. Popov, “On Schauder Bases Which Are Conditional in Each Hyperoctant,” Sib. Matem. Zhurn. 28(1), 115–118 (1987).

    MathSciNet  Google Scholar 

  10. O. V. Lelond, E. M. Semenov, and S. N. Uksusov, “The Space of Fourier-Haar Multipliers,” Sib. Matem. Zhurn. 46(1), 130–138 (2005).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kazarian.

Additional information

Dedicated to the memory of the academician Petr Lavrent’evich Ul’yanov

Original Russian Text © K.S. Kazarian, E.M. Semenov, S.N. Uksusov, 2008, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, No. 5, pp. 48–54.

About this article

Cite this article

Kazarian, K.S., Semenov, E.M. & Uksusov, S.N. Bases of rearrangement invariant spaces. Russ Math. 52, 41–46 (2008). https://doi.org/10.3103/S1066369X08050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X08050058

Key words

Navigation