Skip to main content
Log in

The hardy and bellman operators in spaces connected with H(\( \mathbb{T} \)) and BMO(\( \mathbb{T} \))

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Assume that 1 ≤ p < ∞ and a function fL p[0, π] has the Fourier series \( \sum\limits_{n = 1}^\infty {a_n } \) cos nx. According to one result of G.H. Hardy, the series \( \sum\limits_{n = 1}^\infty {n^{ - 1} } \sum\limits_{k = 1}^n {a_k } \) cos nx is the Fourier series for a certain function \( \mathcal{H} \)(f) ∈ L p[0, π]. But if 1 < p ≤ ∞ and fL p[0, π], then the series \( \sum\limits_{n = 1}^\infty {\sum\limits_{k = n}^\infty {k^{ - 1} a_k } } \) cos nx is the Fourier series for a certain function \( \mathcal{B} \)(f) ∈ L p[0, π]. Similar assertions are true for sine series. This allows one to define the Hardy operator \( \mathcal{H} \) on L p(\( \mathbb{T} \)), 1 ≤ p < ∞, and to define the Bellman operator \( \mathcal{B} \) on L p(\( \mathbb{T} \)), 1 < p ≤ ∞. In this paper we prove that the Bellman operator boundedly acts in VMO(\( \mathbb{T} \)), and the Hardy operator also maps a certain subspace C(\( \mathbb{T} \)) onto VMO(\( \mathbb{T} \)). We also prove the invariance of certain classes of functions with given majorants of modules of continuity or best approximations in the spaces H(\( \mathbb{T} \)), L(\( \mathbb{T} \)), VMO(\( \mathbb{T} \)) with respect to the Hardy and Bellman operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Hardy, “Notes on Some Points in the Integral Calculus,” Messenger Math. 49, 149–155 (1919).

    Google Scholar 

  2. G. H. Hardy, “Notes on Some Points in the Integral Calculus,” LXVI Messenger Math. 58, 50–52 (1928).

    Google Scholar 

  3. R. Bellman, “A Note on a Theorem of Hardy on Fourier Constants,” Bull. Amer. Math. Soc. 50(10), 741–744 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  4. C.-T. Loo, “Transformations of Fourier Coefficients,” Amer. J. Math. 71(2), 269–282 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. A. Konyushkov, “About the Lipschitz Classes,” Izv. Akad. Nauk SSSR, Ser. Matem. 21(3), 423–448 (1957).

    Google Scholar 

  6. B. I. Golubov, “About the Hardy and Bellman Transformations of the Fourier Coefficients,” in Fourier Series: Theory and Applications (Ukr. Akad. Nauk, Inst. Matem., Kiev, 1992), pp. 18–26.

    Google Scholar 

  7. A. G. Siskakis, “Composition Semi-Groups and the Cesaro Operator on H p,” J. London Math. Soc. 36(1), 153–164 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. G. Siskakis, “The Cesaro Operator is Bounded on H 1,” Proc. Amer. Math. Soc. 110(2), 461–462 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Stempak, “Cesaro Averaging Operators,” Proc. Royal Soc. Edinburgh 124A, 121–126 (1994).

    MathSciNet  Google Scholar 

  10. D. V. Giang and F. Moricz, “The Cesaro Operator is Bounded on the Hardy Space,” Acta Sci. Math. (Szeged) 61(3–4), 535–544 (1995).

    MATH  MathSciNet  Google Scholar 

  11. B. I. Golubov, “About the Hardy and Bellman Transformations of Spaces H 1 and BMO,” Matem. Zametki 63(3), 475–478 (1998).

    MathSciNet  Google Scholar 

  12. B. I. Golubov, “On Boundedness of the Hardy and Bellman Operators in the Spaces H and BMO,” Numer. Funct. Anal. Optimiz. 21, 145–158 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Xiao, “Cesaro Transforms of Fourier Coefficients of L -functions,” Proc. Amer. Math. Soc. 125(12), 3613–3616 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  14. B. I. Golubov, “The Boundedness of the Hardy and Hardy-Littlewood Operators in the Spaces Re H 1 and BMO,” Matem. Sborn. 188(7), 93–106 (1997).

    MathSciNet  Google Scholar 

  15. F. Moricz, “The Harmonic Cesáro and Copson Operators on the Spaces L p, 1 ≤ p ≤ ∞, H 1 and BMO,” Acta Sci. Math. (Szeged) 65(1–2), 293–310 (1999).

    MATH  MathSciNet  Google Scholar 

  16. B. I. Golubov, “On One Bellman Theorem,” Matem. Sborn. 185(11), 31–40 (1994).

    MATH  Google Scholar 

  17. K. F. Andersen, “On the Representation of Fourier Coefficients of Certain Classes of Functions,” Pacific J. Math. 100(2), 243–248 (1982).

    MATH  MathSciNet  Google Scholar 

  18. V. A. Rodin, “The Hardy and Bellman Transformations in the Spaces Close to L and L 1,” Zapiski Nauchn. Semin. POMI 262, 204–213 (1999).

    Google Scholar 

  19. N. K. Bari, Trigonometric Series (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  20. F. John and L. Nirenberg, “On Functions of Bounded Mean Oscillation,” Comm. Pure Appl. Math. 14 415–426 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Sarason, “Functions of Vanishing Mean Oscillation,” Trans. Amer. Math. Soc. 207(2), 391–405 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Garnett, Bounded Analytic Functions (Academic Press, New York, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  23. N. K. Bari and S. B. Stechkin, “The Best Approximations and Differential Properties of Two Conjugate Functions,” Tr. Mosk. Matem. Obshchestva 5, 483–522 (1956).

    Google Scholar 

  24. V. K. Dzyadyk, Introduction to the Theory of the Uniform Approximation of Functions by Polynomials (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  25. B. Kuttner, “Some Theorems on Fractional Derivatives,” Proc. London Math. Soc. 3 480–497 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Bergh, “Functions of Bounded Mean Oscillation and Hausdorff-Young Type Theorems,” Lect. Notes in Math. 1302, 130–136 (1988).

    Article  MathSciNet  Google Scholar 

  27. A. A. Konyushkov, “The Best Approximations with Transformation of the Fourier Coefficients by the Method of Mean Averages and the Fourier Series with Nonnegative Coefficients,” Sib. Matem. Zhurn. 3(1), 56–78 (1962).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Volosivets.

Additional information

Original Russian Text © S.S. Volosivets and B.I. Golubov, 2008, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, No. 5, pp. 4–13.

About this article

Cite this article

Volosivets, S.S., Golubov, B.I. The hardy and bellman operators in spaces connected with H(\( \mathbb{T} \)) and BMO(\( \mathbb{T} \)). Russ Math. 52, 1–8 (2008). https://doi.org/10.3103/S1066369X08050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X08050010

Key words

Navigation