Skip to main content
Log in

Abelian equations and rank problems for planar webs

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We find an invariant characterization of planar webs of maximum rank. For 4-webs, we prove that a planar 4-web is of maximum rank three if and only if it is linearizable and its curvature vanishes. This result leads to the direct web-theoretical proof of the Poincaré theorem: A planar 4-web of maximum rank is linearizable. We also find an invariant intrinsic characterization of planar 4-webs of rank two and one and prove that in general such webs are not linearizable. This solves the Blaschke problem “to find invariant conditions for a planar 4-web to be of rank 1 or 2 or 3.” Finally, we find invariant characterization of planar 5-webs of maximum rank and prove than in general such webs are not linearizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Abel, “Mémoire sur Une Propriété générale d’Une Classe très Etendue de Fonctions Transcendentes,” in Œuvres Complètes de Niels Henrik Abel. Ed. by L. Sylow and S. Lie (new ed.) (Imprimerie de Grøndahl & Son, Christiania, 1881), Vol. 1, Chap. 12, 145–211. Reprint of the second (1881) edition (Éditions Jacques Gabay, Sceaux, 1992). First published Mémoires Presentes par Divers Savants, t. VII, 1841.

    Google Scholar 

  2. M. A. Akivis, V. V. Goldberg, and V. V. Lychagin, “Linearizability of d-Webs, d ≥ 4, on Two-Dimensional Manifolds,” Selecta Math. 10, No. 4, 431–451 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Blaschke, Einführung in die Geometrie der Waben (Birkhäuser-Verlag, Basel-Stutgart, 1955).

    Google Scholar 

  4. W. Blaschke and G. Bol, Geometrie der Gewebe (Springer-Verlag, Berlin, 1938).

    Google Scholar 

  5. W. Blaschke and J. Dubourdieu, “Invarianten von Kurvengeweben,” Abh. Math. Sem. Univ. Hamburg 6, 198–215 (1928).

    MATH  Google Scholar 

  6. G. Bol, “On n-webs of Curves in a Plane,” Bull. Amer. Math. Soc. 38, 855–857 (1932).

    MATH  MathSciNet  Google Scholar 

  7. S. S. Chern, “Web Geometry,” Bull. Amer. Math. Soc. (N. S.) 6, No. 1, 1–8 (1982).

    MATH  MathSciNet  Google Scholar 

  8. S. S. Chern and P. A. Griffiths, “An Inequality for the Rank of a Web and Webs of Maximum Rank,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5, No. 3, 539–557 (1978).

    MATH  MathSciNet  Google Scholar 

  9. S. S. Chern and P. A. Griffiths, “Abel’s Theorem and Webs,” Jahresber. Deutsch. Math.-Verein 80, Nos. 1–2, 13–110 (1978).

    MATH  MathSciNet  Google Scholar 

  10. A. Dou, “Plane Four-Webs,” Mem. Real Acad. Ci. Art. Barcelona 31, No. 5, 133–218 (1953).

    MathSciNet  Google Scholar 

  11. A. Dou, “Rang der ebenen 4-Gewebe,” Abh. Math. Sem. Univ. Hamburg 19, Heft 3/4, 149–157 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. V. Goldberg, Theory of Multicodimensional (n + 1)-Webs (Kluwer Academic Publishers, Dordrecht, 1988).

    Google Scholar 

  13. V. V. Goldberg, “Four-Webs in the Plane and their Linearizability,” Acta Appl. Math. 80, No. 1, 35–55 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. V. Goldberg and V. V. Lychagin, “On the Blaschke Conjecture for 3-Webs,” J. Geom. Anal. 16, No. 1, 69–115 (2006).

    MATH  MathSciNet  Google Scholar 

  15. P. A. Griffiths, “Variations on a Theorem of Abel,” Invent. Math. 35, 321–390 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  16. P. A. Griffiths, “On Abel’s Differential Equations,” Algebraic Geometry, J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md, pp. 26–51 (1976). Johns Hopkins Univ. Press, Baltimore, Md, 1977.

    Google Scholar 

  17. B. Kruglikov and V. V. Lychagin, “Multi-Brackets of Differential Operators and Compatibility of PDE Systems,” C. R. Acad. Sci. Paris, Ser. 1342, 557–561 (2006).

    MathSciNet  Google Scholar 

  18. L. Lewin, Polylogarithms and Associated Functions (North-Holland Publishing Co., New York, 1981).

    MATH  Google Scholar 

  19. S. Lie, “Bestimmung aller Flächen, die in mehrfacher Weise durch Translationsbewegung einer Curve erzeugt werden,” Lie Arch. VII, 155–176 (1882).

    Google Scholar 

  20. K. Mayrhofer, “Kurvensysteme auf Flächen,” Math. Z. 28, 728–752 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. N. Mihăileanu, “Sur les Tissus Plans de Première Espèce,” Bull. Math. Soc. Roum. Sci. 43, 23–26 (1941).

    MATH  Google Scholar 

  22. Al. Pantazi, “Sur la Détermination du Rang d’un Tissu Plan,” C. R. Inst. Sci. Roum. 2, 108–111 (1938).

    Google Scholar 

  23. Al. Pantazi, “Sur Une Classification Nouvelle des Tissus Plans,” C. R. Inst. Sci. Roum. 4, 230–232 (1940).

    Google Scholar 

  24. L. Pirio, “Sur les Tissus Plans de Rang Maximum et le Problème de Chern,” C. R. Acad. Sci. Paris, Ser. I 339, No. 2, 131–136 (2004).

    MATH  MathSciNet  Google Scholar 

  25. L. Pirio, “Équations Fonctionnelles Abéliennes et Géométrie des Tissus,” Ph. D. Thesis (Univ. Paris-6, 2004).

  26. H. Poincaré, “Sur les Surfaces de Translation et les Fonctions Abéliennes,” Bull. Soc. Math. France 29, 61–86 (1901).

    MathSciNet  MATH  Google Scholar 

  27. O. Ripoll, “Determination du Rang des Tissus du Plan et Autres Invariants Geometriques,” C. R. Math. Acad. Sci. Paris 341, No. 4, 247–252 (2005).

    MATH  MathSciNet  Google Scholar 

  28. L. J. Rogers, “On Function Sum Theorems Connected with the Series \(\sum\limits_{n = 1}^\infty {\tfrac{{x^n }}{{n^2 }}} \),” London Math. Soc. Proc. (2) 4, 169–189 (1907).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Goldberg.

Additional information

The text was submitted by the authors in English.

About this article

Cite this article

Goldberg, V.V., Lychagin, V.V. Abelian equations and rank problems for planar webs. Russ Math. 51, 39–75 (2007). https://doi.org/10.3103/S1066369X07100039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X07100039

Keywords

Navigation