Skip to main content
Log in

Deposition and Localization of Polishing Powder Wear Nanoparticles on the Processed Surface of Polymeric Optical Materials

  • INVESTIGATION OF MACHINING PROCESSES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The investigation revealed patterns in the formation and localization of deposits of polishing powder wear nanoparticles on the processed surface during the polishing of polymeric materials using disperse systems of micro- and nanopowders. The total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles increases nonlinearly with the movement of particles, extremally depends on the product of spectral separation for dielectric constant separation between the processed material, polishing powder, and the disperse system, and exponentially increases with the resonator detuning. When polystyrene is polished using cerium dioxide micropowder, deposition on the processed surface is most likely to occur, with the maximum value of the total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles being at 49.7 Mb. Experimental data indicate that the localization of deposits with polishing powder wear nanoparticles on the processed surface occurs according to the distribution function of the total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles across circular zones, which aligns well with experimental results, within 12.5%. The experimentally determined average thickness of the deposit fragments of polishing powder wear nanoparticles, forming complete or partial coverage of the component surface, ranges from 1.1 to 1.5 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Filatov, Y.D., Polishing of precision surfaces of optoelectronic device elements made of glass, sitall, and optical and semiconductor crystals: a review, J. Superhard Mater., 2020, vol. 42, no. 1, pp. 30–48.

    Article  Google Scholar 

  2. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., and Koval’ov, S.V., Fizichni zasadi formoutvorennya pretsiziinikh poverkhon’ pid chas mekhanichnoï obrobki nemetalevikh materialiv. Monograf (Physical Basis for the Formation of Precision Surfaces during Mechanical Processing of Non-Metallic Materials), Kyiv: Naukova Dumka, 2017.

  3. Filatov, Yu.D., Modeling and experimental study of surfaces optoelectronic elements from crystal materials in polishing, in Simulation and Experiments of Material-Oriented Ultra-Precision Machining. Springer Tracts in Mechanical Engineering, Zhang, J., Guo, B., Zhang, J., Eds., Singapore: Springer, 2019, pp. 129–165.

    Google Scholar 

  4. Prikhna, T.A., Starostina, A.V., Lizkendorf, D., Petrusha, I.A., Ivakhnenko, S.A., Borimskii, A.I., Filatov, Yu.D., Loshak, M.G., Serga, M.A., Tkach, V.N., Turkevich, V.Z., Sverdun, V.B., Klimenko, S.A., Turkevich, D.V., Dub, S.N., Basyuk, T.V., Karpets, M.V., Moshchil, V.E., Kozyrev, A.V., Il’nitskaya, G.D., Kovylyaev, V.V., Cabiosh, T., and Chartier, P., Studies of the oxidation stability, mechanical characteristics of materials based on MAX phases of the Ti–Al–(C,N) system, and of the possibility of their use as tool bonds and materials for polishing, J. Superhard Mater., 2014, vol. 36, no. 1, pp. 9–17.

    Article  Google Scholar 

  5. Filatov, Y.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of the rheological properties of a dispersed system on the polishing indicators of optical glass and glass ceramics, J. Superhard Mater., 2021, vol. 43, no. 1, pp. 65–73.

    Article  Google Scholar 

  6. Filatov, Yu.D., Mechanism of formation of surface microrelief in machining glass, Sverkhtverd. Mater., 1991, no 5, pp. 61–65.

  7. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polished surface roughness of optoelectronic components made of monocrystalline materials, J. Superhard Mater., 2016, vol. 38, no. 3, pp. 197–206.

    Article  Google Scholar 

  8. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Y.D., and Vetrov, A.G., Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics, Funct. Mater., 2016, vol. 23, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  9. Filatov, Yu.D., Sidorko, V.I., Filatov, A.Yu., Yashuk, V.P., Heisel, W., and Storchak, M., Surface quality control in diamond abrasive finishing, in Optical Measurement Systems for Industrial Inspection VI. Proc. SPIE, 2009, vol. 7389, p. 73892O.

    Article  ADS  Google Scholar 

  10. Filatov, Yu.D., Filatov, O.Y., Heisel, U., Storchak, M.G., and Monteil, G., In situ control of roughness of processed surfaces by reflectometric method, Proc. SPIE. Opt. Micro- Nanometrol., 2010, vol. 7718, p. 77181J.

  11. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.

    Article  Google Scholar 

  12. Filatov, Yu.D., New patterns of polishing surfaces of parts made of nonmetallic materials, J. Superhard Mater., 2023, vol. 45, no. 2, pp. 140–149.

    Article  Google Scholar 

  13. Filatov, Yu.D., Filatov, O.Y., Monteil, G, Heisel, U., and Storchak, M.G., Bound-abrasive grinding and polishing of surfaces of optical materials, Proc. SPIE. Opt. Eng. Appl., 2010, vol. 7786, pp. 77861–77869.

  14. Filatov, Yu.D., Interaction between debris particles and polishing powder wear particles in polishing optoelectronic components, J. Superhard Mater., 2018, vol. 40, no. 4, pp. 282–289.

    Article  Google Scholar 

  15. Filatov, Yu.D., Filatov, A.Yu., Syrota, O.O., Yashchuk, V.P., Monteil, G., Heisel, U., and Storchak, M., The influence of tool wear particles scattering in the contact zone on the workpiece surface microprofile formation in polishing quartz, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 415–422.

    Article  Google Scholar 

  16. Filatov, A.Yu., Poperenko, L.V., Yashchuk, V.P., Sidorko, V.I., Heisel, W., and Storchak, M., Wear particles deposit formation on the polishing tool working surface, J. Superhard Mater., 2011, vol. 33, no. 1, pp. 44–53.

    Article  Google Scholar 

  17. Filatov, Y.D., Filatov, O.Y., Monteil, G., Heisel, U., and Storchak, M.G., Bound-abrasive grinding and polishing of surfaces of optical materials, Opt. Eng., 2011, vol. 50, no. 6, p. 063401.

    Article  ADS  Google Scholar 

  18. Filatov, Yu.D., Monteil, G., Sidorko, V.I., and Filatov, O.Y., Formation of a deposit on workpiece surface in polishing nonmetallic materials, Proc. SPIE. Smart Sens., Actuators, MEMS VI, 2013, vol. 8763, p. 876336.

  19. Filatov, A.Yu. and Sidorko, V.I., Localization of fragments of a deposit on the workpiece surface in polishing nonmetallic materials, J. Superhard Mater., 2011, vol. 33, no. 5, pp. 340–351.

    Article  Google Scholar 

  20. Filatov, Yu.D. and Rogov, V.V., Features of a glass-polishing process using a tool with bonded polishing powder, Opt. Spectrosc., 1993, vol. 74, no. 6, pp. 727–730.

    ADS  Google Scholar 

  21. Mathur, V. and Sharma, K., Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends, Heat Mass Transfer, 2016, vol. 52, pp. 2901–2911.

    Article  CAS  ADS  Google Scholar 

  22. Eissa, M.F., Effect of transferred electronic energy density on optical, electrical and structural properties of polyallyl-diglycol carbonate (CR-39) polymer, J. Macromol. Sci., Part B: Phys., 2014, vol. 53, no. 3, pp. 529–540.

    Article  CAS  ADS  Google Scholar 

  23. Abdul-Kader, A.M., Zaki, M.F., and El-Badry, Basma A., Modified the optical and electrical properties of CR-39 by gamma ray irradiation, J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 3, pp. 286–291.

    Google Scholar 

  24. Zhang, H.Q., Jin, Y., and Qiu, Y., The optical and electrical characteristics of PMMA film prepared by spin coating method, in Proceedings of Global Conference on Polymer and Composite Materials (PCM 2015), IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, pp. 1–5.

    Article  Google Scholar 

  25. Ashry, A.H., Abou-Leila, M., and Abdalla, A.M., Detection efficiency of alpha particles in CR-39 nuclear track detector: experimental study, Adv. Sci., Eng. Med., 2012, vol. 4, no. 4, pp. 341–344.

    Article  CAS  Google Scholar 

  26. Filatov, Yu.D., Diamond polishing of crystalline materials for optoelectronics, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 427–433.

    Article  Google Scholar 

  27. Filatov, Yu.D., Kurilovich, V.D., and Kovalyov, V.A., Improving efficiency of finishing natural stone using diamond-polymer fiber tools, J. Superhard Mater., 2014, vol. 36, no. 1, pp. 35–42.

    Article  Google Scholar 

  28. Filatov, Yu.D., Polishing of alumosilicate materials with bound-abrasive tools, Sverkhtverd. Mater., 2001, no. 3, pp. 36–49.

  29. Babitha, K.K., Sreedevi, A., Priyanka, K.P., Sabu, B., and Varghese, Th., Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Indian J. Pure Appl. Phys., 2015, vol. 53, pp. 596–603.

    Google Scholar 

  30. Hadi Al-Kadhemy, M.F., Rasheed, Z.S., and Salim, S.R., Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray, J. Rad. Res. Appl. Sci., 2016, vol. 9, no. 3, pp. 321–331.

    Google Scholar 

  31. Luo, Q., Zeng, S., Shu, Y., Fu, Z., Zhaoc, H., and Su, S., A novel green process for tannic acid hydrolysis using an internally sulfonated hollow polystyrene sphere as catalyst, RSC Adv., 2018, vol. 8, pp. 17151–17158.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  32. Aziz, Sh.B., Abdullah, O.Gh., Hussein, Ah.M., and Ahmed, H.M., From insulating pmma polymer to conjugated double bond behavior: green chemistry as a novel approach to fabricate small band gap polymers, Polymers, 2017, vol. 9, no. 626, pp. 1–15.

    Article  Google Scholar 

  33. Tommasini, F.J., da Cunha Ferreira, L., Tienne, L.G.P., de Oliveira Aguiar, V., da Silva, M.H.P., da Mota Rocha, L.F., and de Fatima Vieira Marques, M., Poly (methyl methacrylate)-SiC nanocomposites prepared through in situ polymerization, Mater. Res., 2018, vol. 21, no. 6, p. e20180086.

    Article  Google Scholar 

  34. Sayyah, S.M., El-Shafiey, Z.A., Barsoum, B.N., and Khaliel, A.B., Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-containing ligand and its cobalt(II) complex during γ-radiolysis, Appl. Polym. Sci., 2003, vol. 91, no. 3, pp. 1937–1950.

    Article  Google Scholar 

  35. Al-Jobouri, H.A., Jber, N.R., Al-Shukrawi, A.H., and Hamid, M.K., Physiochemical properties of crystalline etch products for CR-39 track detector after α-particles irradiation, Adv. Appl. Sci. Res., 2013, vol. 4, no. 4, pp. 501–507.

    CAS  Google Scholar 

  36. Zaki, M.F., Elshaer, Y.H., and Taha, D.H., Studying the structural, optical, chemical and electrochemical etching changes of CR-39 for dosimetric applications, Radiat. Prot. Dosim., 2017, pp. 1–8. https://doi.org/10.1093/rpd/ncx040

  37. Jain, R.K., Kumar, A., Chakraborty, R.N., and Singh, B.K., FTIR spectra of UV induced CR-39 plastic detector, Proc. DAE-BRNS Symp. Nucl. Phys., 2016, vol. 61, pp. 1006–1007.

    Google Scholar 

  38. Yamauchi, T., Nakai, H., Somaki, Y., and Oda, K., Formation of CO2 gas and OH groups in CR-39 plastics due to gamma-ray and ions irradiation, Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 99–103.

    Article  CAS  Google Scholar 

  39. Filatov, Yu.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., and Kovalev, V.A., Performance efficiency of the polishing of polymer optical materials, J. Superhard Mater., 2022, vol. 44, no. 5, pp. 358–367.

    Article  Google Scholar 

  40. Filatov, Yu.D., Sidorko, V.I., Sokhan’, S.V., Kovalev, S.V., Boyarintsev, A.Y., Kovalev, V.A., and Yurchyshyn, O.Y., Roughness of polished surfaces of optoelectronic components made of polymeric optical materials, J. Superhard Mater., 2023, vol. 45, no. 1, pp. 54–64.

    Article  Google Scholar 

  41. Filatov, Y.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of interaction between polishing powder particles and a treated material on polishing characteristics of optical surfaces, J. Superhard Mater., 2021, vol. 43, no. 4, pp. 296–302.

    Article  Google Scholar 

  42. Filatov, Yu.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of the processed material structure on the polishing quality of optical surfaces, J. Superhard Mater., 2021, vol. 43, no. 6, pp. 435–443.

    Article  Google Scholar 

  43. Filatov, Yu.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., Garachenko, V.V., and Kovalev, V.A., Effect of the spectroscopic parameters of the processed material and polishing powder on the parameters of polishing of optical surfaces, J. Superhard Mater., 2022, vol. 44, no. 1, pp. 37–45.

    Article  Google Scholar 

  44. Filatov, Yu.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., and Kovalev, V.A., Effect of the dielectric characteristics of a treated material, a polishing powder, and a disperse system on the energy of their interaction in the polishing of optical surfaces, J. Superhard Mater., 2022, vol. 44, no. 4, pp. 276–284.

    Article  Google Scholar 

  45. Filatov, Yu.D. and Sidorko, V.I., Statistical approach to wear of nonmetallic workpiece surfaces in polishing, Sverkhtverd. Mater., 2005, no. 1, pp. 58–66.

  46. Filatov, Yu.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., and Kovalev, V.A., Transfer energy in the interaction of an optical surface with a polishing disperse system, J. Superhard Mater., 2022, vol. 44, no. 2, pp. 117–126.

    Article  Google Scholar 

  47. Filatov, Yu.D., Relationship between the transfer coefficients and transfer energy during the polishing of nonmetallic materials, J. Superhard Mater., 2022, vol. 44, no. 3, pp. 226–228.

    Article  Google Scholar 

  48. Dovzhenko, D., Lednev, M., Mochalov, K., Vaskan, I., Rakovich, Yu., and Nabiev, I., Polariton-assisted manipulation of energy relaxation pathways: donor–acceptor role reversal in a tuneable microcavity, Chem. Sci., 2021, vol. 12, pp. 12794–12805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nabiev, I., Strong light-matter coupling for optical switching through the fluorescence and FRET control, PhysBioSymp 2019. J. Phys: Conf. Ser., 2021, vol. 2058, p. 012001.

    Google Scholar 

  50. Filatov, Yu.D., Sidorko, V.I., Kovalev, S.V., Boyarintsev, A.Yu., Kovalev, V.A., and Yurchishyn, O.Ya., Interaction of sludge particles and wear particles of polishing powder in the process of polishing of polymeric optical materials, J. Superhard Mater., 2023, vol. 45, no. 3, pp. 199–207.

    Article  Google Scholar 

  51. Filatov, Yu.D., Sidorko, V.I., Kovalev, S.V., Boyarintsev, A.Yu. Kovalev, V.A., and Yurchyshyn, O.Ya., Scattering of sludge nanoparticles during the polishing of optical materials, J. Superhard Mater., 2023, vol. 45, no. 5, pp. 370–378.

    Article  Google Scholar 

  52. Filatov, Yu.D., Sidorko, V.I., Koval’ov, S.V., Boyarintsev, A.Yu., and Yurchishin, O.Ya., Dispersion of wear nanoparticles of polishing powder during polishing of polymeric optical materials, Nadtverdi Mater., 2023, no. 6, pp. 58–68.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Filatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, Y.D., Sidorko, V.I., Kovalev, S.V. et al. Deposition and Localization of Polishing Powder Wear Nanoparticles on the Processed Surface of Polymeric Optical Materials. J. Superhard Mater. 46, 55–64 (2024). https://doi.org/10.3103/S1063457624010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457624010040

Keywords:

Navigation