Skip to main content
Log in

Preparation and Mechanical Properties of High-Entropy Ceramics (TiZrHfNbTa)C

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

We prepared dense high-entropy ceramic material (TiZrHfNbTa)C by hot pressing; the optimum hot-pressing temperature is 2000°C. At lower temperatures, zirconium oxides, hafnium oxides, and undissolved carbides were observed in the ceramic composition. The strength of the resulting ceramics at room temperature was 394 ± 72 MPa, at a temperature of 1600°С, it was 119 ± 31 MPa. For pure carbides, a significant drop in hardness was observed at an increased load on the indenter, while for (TiZrHfNbTa)C, hardness is retained under any load. To achieve the maximum hardness and strength of high-entropy ceramics (TiZrHfNbTa)C, the amount of ZrO2 and HfO2 in the composition of ceramics should be decreased with a simultaneous decrease in grain size by using submicrometer-scale powders and selecting proper technological modes of production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gorban, V.F., Danylenko, M.I., Krapivka, M.A., and Firstov, S.A., Structural and chemical microinhomogeneity of the high-entropy TiVZrNbHfTa coating, Powder Metall. Met. Ceram., 2019, vol. 58, pp. 469–473.

    Article  CAS  Google Scholar 

  2. Karpets, M.V., Rokytska, O.A., Yakubiv, M.I., Gorban, V.F., Krapivka, M.O., and Samelyuk, A.V., Structural state of high-entropy Fe40–xNiCoCrAlx alloys in high-temperature oxidation, Powder Metall. Met. Ceram., 2020, vol. 59, pp. 467–476.

    Article  CAS  Google Scholar 

  3. Firstov, S.A., Gorban, V.F., Danilenko, N.I., Karpets, M.V., Andreev, A.A., and Makarenko, E.S., Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy, Powder Metall. Met. Ceram., 2014, vol. 52, pp. 560–566.

    Article  CAS  Google Scholar 

  4. Krapivka, M.O., Myslyvchenko, O.M., and Karpets, M.V., Base alloy concept in the development of high-entropy materials, Powder Metall. Met. Ceram., 2018, vol. 56, pp. 589–598.

    Article  CAS  Google Scholar 

  5. Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y., High-entropy alloy: Challenges and prospects, Mater. Today, 2016, vol. 19, pp. 349–362.

    Article  CAS  Google Scholar 

  6. Tsai, M.H. and Yeh, J.W., High-entropy alloys: A critical review, Mater. Res. Lett., 2014, vol. 2, pp. 107–123.

    Article  Google Scholar 

  7. Feng, L., Fahrenholtz, W.G., and Hilmas, G.E., Two-step synthesis process for high-entropy diboride powders, J. Am. Ceram. Soc., 2020, vol. 103, pp. 724–730.

    Article  CAS  Google Scholar 

  8. Ye, B., Ning, S., Liu, D., Wen, T., and Chu, Y., One-step synthesis of coral-like high-entropy metal carbide powders, J. Am. Ceram. Soc., 2019, vol. 102, pp. 6372–6378.

    Article  CAS  Google Scholar 

  9. Feng, L., Fahrenholtz, W.G., and Hilmas, G.E., Low-temperature sintering of single-phase, high-entropy carbide ceramics, J. Am. Ceram. Soc., 2019, vol. 102, pp. 7217–7224.

    Article  CAS  Google Scholar 

  10. Zhang, R.Z. and Reece, M.J., Review of high entropy ceramics: Design, synthesis, structure and properties, J. Mater. Chem. A, 2019, vol. 7, pp. 22148–22162.

    Article  CAS  Google Scholar 

  11. Sarkar, A., Breitung, B., and Hahn, H., High entropy oxides: The role of entropy, enthalpy and synergy, Scr. Mater., 2020, vol. 187, pp. 43–48.

    Article  CAS  Google Scholar 

  12. Sarkar, A., Wang, Q., Schiele, A., Chellali, M.R., Bhattacharya, S.S., Wang, D., Brezesinski, T., Hahn, H., Velasco, L., and Breitung, B., High-entropy oxides: Fundamental aspects and electrochemical properties, Adv. Mater., 2019, vol. 31, 1806236.

    Article  Google Scholar 

  13. Gild, J., Braun, J., Kaufmann, K., Marin, E., Harrington, T., Hopkins, P., Vecchio, K., and Luo, J., A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2, J. Mater., 2019, vol. 5, pp. 337–343.

    Google Scholar 

  14. Qin, Y., Wang, J.C., Liu, J.X., Wei, X.F., Li, F., Zhang, G.J., Jing, C., Zhao, J., and Wu, H., High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 2752–2759.

    Article  CAS  Google Scholar 

  15. Qin, Y., Liu, J.X., Li, F., Wei, X., Wu, H., and Zhang, G.J., A high entropy silicide by reactive spark plasma sintering, J. Adv. Ceram., 2019, vol. 8, pp. 148–152.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Bin Jiang, Z., Sun, S.K., Guo, W.M., Chen, Q.S., Qiu, J.X., Plucknett, K., and Lin, H.T., Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction, J. Eur. Ceram. Soc., 2019, vol. 39, pp. 3920–3924.

    Article  CAS  Google Scholar 

  17. Liu, D., Wen, T., Ye, B., and Chu, Y., Synthesis of superfine high-entropy metal diboride powders, Scr. Mater., 2019, vol. 167, pp. 110–114.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Guo, W.M., Bin Jiang, Z., Zhu, Q.Q., Sun, S.K., You, Y., Plucknett, K., and Lin, H.T., Dense high-entropy boride ceramics with ultra-high hardness, Scr. Mater., 2019, vol. 164, pp. 135–139.

    Article  CAS  Google Scholar 

  19. Failla, S., Galizia, P., Fu, S., Grasso, S., and Sciti, D., Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions, J. Eur. Ceram. Soc., 2020, vol. 40, pp. 588–593.

    Article  CAS  Google Scholar 

  20. Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., and Vecchio, K.S., Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 2019, vol. 166, pp. 271–280.

    Article  CAS  Google Scholar 

  21. Zhou, J., Zhang, J., Zhang, F., Niu, B., Lei, L., and Wang, W., High-entropy carbide: A novel class of multicomponent ceramics, Ceram. Int., 2018, vol. 44, pp. 22014–22018.

    Article  CAS  Google Scholar 

  22. Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J.P., Brenner, D.W., Vecchio, K.S., and Curtarolo, S., High-entropy high-hardness metal carbides discovered by entropy descriptors, Nat. Commun., 2018, vol. 9, 4980.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng, L., Chen, W.T., Fahrenholtz, W.G., and Hilmas, G.E., Strength of single-phase high-entropy carbide ceramics up to 2300°C, J. Am. Ceram. Soc., 2021, vol. 104, no. 1, pp. 419–427.

    Article  CAS  Google Scholar 

  24. Wang, H., Han, X., Liu, W., and Wang, Y., Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400–1600°C, Ceram. Int., 2021, vol. 47, pp. 10848–10854.

    Article  CAS  Google Scholar 

  25. Grigor’ev, O.N., Melakh, L.M., Koroteev, A.V., Ivanov, S.M., Bega, N.D., and Kotenko, V., Impact resistant ceramic of B4C–TiSi2 system, Naukovy Notatki, 2017, no. 58, pp. 86–93.

  26. Galanov, B.A., Kartuzov, V.V., Grigoriev, O.N., Melakh, L.M., Ivanov, S.M., Kartuzov, E.V., and Swoboda, P., Penetration resistance of B4C–CaB6 based light-weight armor materials, Procedia Eng., 2013, vol. 58, pp. 328–337.

    Article  CAS  Google Scholar 

  27. Ivzhenko, V.V., Kryl’, A.O., Kryl’, Ya.A., Kaidash, O.N., Leshchuk, A.A., Dub, S.N., and Sarnavskaya, G.F., Study of aeroabrasive wear of hot-pressed materials of the B4C–TiB2 system, J. Superhard Mater., 2014, vol. 36, no. 3, pp. 187–192.

    Article  Google Scholar 

  28. Fesenko, I.P., Prokopiv, M.M., Chasnik, V.I., Kaidash, O.M., Oliinik, G.S., and Kuzenkova, M.O., Alyumonitridnye funktsional’nye materialy, poluchennye iz nanodispersnykh I mikronnykh poroshkov goryachim pressovaniem i svobodnym spekaniem (Aluminum Nitride Functional Materials Obtained from Nanodisperse and Micron Powders by Hot Pressing and Free Sintering), Kyiv: ALKON, 2015.

  29. Grigoriev, O.N., Stepanenko, A.V., Vinokurov, V.B., Neshpor, I.P., Mosina, T.V., and Silvestroni, L., ZrB2–SiC ceramics: Residual stresses and mechanical properties, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 4720–4727.

    Article  CAS  Google Scholar 

  30. Galanov, B.A. and Grigor’ev, O.N., Analytical model for indentation of brittle materials, Elektron. Mikrosk. Prochn. Mater., 2006, no. 14, pp. 4–42.

  31. Feng, L., Fahrenholtz, W.G., Hilmas, G.E., and Zhou, Y., Synthesis of single-phase high-entropy carbide powders, Scr. Mater., 2019, vol. 162, pp. 90–93.

    Article  CAS  Google Scholar 

  32. Grigoriev, O.N., Investigation of the plasticity and stength properties of superhard materials by microindentation methods, Sov. Powder Metall. Met. Ceram., 1982, vol. 21, pp. 65–73.

    Article  Google Scholar 

  33. Berdova, M., Liu, X., Wiemer, C., Lamperti, A., Tallarida, G., Cianci, E., Fanciulli, M., and Franssila, S., Hardness, elastic modulus, and wear resistance of hafnium oxide-based films grown by atomic layer deposition, J. Vac. Sci. Technol., A, 2016, vol. 34, 05510.

    Article  Google Scholar 

  34. Wu, D., San, J., Niu, F., Zhao, D., Huang, Y., and Ma, G., Direced laser deposition of Al2O3–ZrO2 melt-grown composite ceramics with multiple composition ratios, J. Mater. Sci., 2000, vol. 55, pp. 6794–6809.

    Article  Google Scholar 

  35. Maschinen, B., Investition, A., Beschaffungen, G., Ersatzbeschaffungen, B., and Mittelherkunft, S., Mechanical Behavior of Materials, Cambridge: Cambridge University Press, 2008, 2nd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Vedel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedel, D.V., Mazur, P.V., Grigoriev, O.M. et al. Preparation and Mechanical Properties of High-Entropy Ceramics (TiZrHfNbTa)C. J. Superhard Mater. 44, 323–330 (2022). https://doi.org/10.3103/S1063457622050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622050094

Keywords:

Navigation