Skip to main content
Log in

Phase Formation and Physical and Mechanical Properties of Fe‒Cu–Ni‒Sn–VN Composites Sintered by Vacuum Hot Pressing for the Diamond Stone Processing Tools

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The effect of the concentration of vanadium nitride additive (in the range from 0 to 10 wt %) on the phase formation, hardness, and fracture toughness of composite diamond-containing materials based on the 51Fe–32Cu–9Ni–8Sn matrix molded by cold pressing and subsequent vacuum hot pressing is investigated. It is found that the addition of 10 wt % of vanadium nitride to the 51Fe–32Cu–9Ni–8Sn composite is accompanied by an increase in the hardness from 3.86 to 8.58 GPa with a slight decrease in the fracture toughness from 5.55 to 4.76 MPa m1/2. Moreover, the H(CVN) dependence has two characteristic segments that differ in the slope. The hardness increases insignificantly (from 3.86 to 5.26 GPa) in the range of 0 < CVN < 4 wt %, while the second region (CVN > 4 wt %) is characterized by a more substantial increase in the hardness and a more significant decrease in the grain size. It is shown that these parameters are achieved owing to the dispersion mechanism of strengthening and modification of the structure (a decrease in the mean particle size of the matrix phase, the formation of new (Fe3Ni)0.5 and Cu3Fe17 phases, and the precipitation of primary and secondary phases of vanadium nitride) and phase composition of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Hereafter, the compositions of CDMs are given in wt %.

REFERENCES

  1. Tillmann, W., Ferreira, M., Steffen, A., Rüster, K., Möller, J., Bieder, S., Paulus, M., and Tolan, M., Carbon reactivity of binder metals in diamond-metal composites—characterization by scanning electron microscopy and X-ray diffraction, Diamond Relat. Mater., 2013, vol. 38, pp. 118–123.

    Article  CAS  Google Scholar 

  2. Li, M., Sun, Y., Meng, Q., Wu, H., Gao, K., and Liu, B., Fabrication of Fe-based diamond composites by pressureless infiltration, Materials, 2016, vol. 9, no. 12, p. 1006.

    Article  PubMed Central  CAS  Google Scholar 

  3. Gevorkyan, E., Mechnik, V., Bondarenko, N., Vovk, R., Lytovchenko, S., Chishkala, V., and Melnik, O., Peculiarities of obtaining diamond–(Fe–Cu–Ni–Sn) composite materials by hot pressing, Funct. Mater., 2017, vol. 24, no. 1, pp. 31–45.

    Article  CAS  Google Scholar 

  4. Hou, M., Guo, S., Yang, L., Gao, J., Peng, J., Hu, T., Wang, L., and Ye, X., Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering, Powder Technol., 2018, vol. 338, pp. 36–43.

    Article  CAS  Google Scholar 

  5. Borowiecka-Jamrozek, J.M., Konstanty, J., and Lachowski, J., The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools, Arch. Foundry Eng., 2018, vol. 18, no. 1, pp. 5–8.

    CAS  Google Scholar 

  6. Tönshoff, H.K., Hillmann-Apmann, H., and Asche, J., Diamond tools in stone and civil engineering industry: Cutting principles, wear and applications, Diamond Relat. Mater., 2002, vol. 11, nos. 3–6, pp. 736–741.

    Article  Google Scholar 

  7. Dormishi, A., Ataei, M., Mikaeil, R., Khalokakaei, R., and Haghshenas, S.S., Evaluation of gang saws’ performance in the carbonate rock cutting process using feasibility of intelligent approaches, Eng. Sci. Technol. Int. J., 2019, vol. 22, no. 3, pp. 990–1000.

    Google Scholar 

  8. Borowiecka-Jamrozek, J., Konstanty, J., and Lachowski, J., The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools, Arch. Foundry Eng., 2018, vol. 18, pp. 5–8.

    CAS  Google Scholar 

  9. Konstanty, J., Romański, A., Baczek, E., and Tyrala, D., New wear resistant iron-base matrix materials for the fabrication of sintered diamond tools, Arch. Metall. Mater., 2015, vol. 60, pp. 633–637.

    Article  CAS  Google Scholar 

  10. Hou, M., Wang, L., Guo, S., Yang, L., Gao, J., Hu, T., and Ye, X., Fabrication of FeCu matrixed diamond tool bits using microwave hot-press sintering, J. Sci. Eng., 2019, vol. 44, pp. 6277–6284.

    CAS  Google Scholar 

  11. Mechnyk, V.A., Diamond–Fe–Cu–Ni–Sn composite materials with predictable stable characteristics, Mater. Sci., 2013, vol. 48, no. 5, pp. 591–600.

    Article  CAS  Google Scholar 

  12. Mechnik, V.A., Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    Article  CAS  Google Scholar 

  13. Aleksandrov, V.A., Akekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sov. J. Superhard Mater., 1984, vol. 6, no. 6, pp. 46–52.

    Google Scholar 

  14. Dutka, V.A., Kolodnitskij, V.M., Zabolotnyj, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, vol. 26, no. 2, pp. 66–73.

    Google Scholar 

  15. Dutka, V.A., Kolodnitskij, V.M., Mel’nichuk, O.V., and Zabolotnyj, S.D., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2005, vol. 27, no. 1, pp. 67–77.

    Google Scholar 

  16. Sveshnikov, I.A. and Kolodnitsky, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd. Mater., 2006, vol. 28, no. 4, pp. 70–75.

    Google Scholar 

  17. Zhukovskij, A.N., Majstrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components. Part 1. Model, Trenie Iznos, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  18. Zhukovskij, A.N., Majstrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components. Part 2. Analysis, Trenie Iznos, 2002, vol. 23, no. 4, pp. 393–396.

    Google Scholar 

  19. Aleksandrov, V.A. and Mechnik, V.A., Effect of heat conduction of diamonds and heat-exchange coefficient on contact temperature and wear of cutting disks, Trenie Iznos, 1993, vol. 14, no. 6, pp. 1115–1117.

    CAS  Google Scholar 

  20. Aleksandrov, V.A., Zhukovsky, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  21. Aleksandrov, V.A., Zhukovskij, A.N., and Mechnik, V.A., Temperature field and wear of heterogeneous diamond wheel under conditions of convectional heat transfer. Part 2, Trenie Iznos, 1994, vol. 15, no. 2, pp. 196–201.

    Google Scholar 

  22. Borowiecka-Jamrozek, J., Microstructure and mechanical properties a new iron-base material used for the fabrication of sintered diamond tools, Adv. Mater. Res., 2014, vol. 1052, pp. 520–523.

    Article  CAS  Google Scholar 

  23. Borowiecka-Jamrozek, J. and Lachowski, J., Properties of sinters produced from commercially available powder mixtures, Arch. Foundry Eng., 2016, vol. 16, no. 4, pp. 37–40.

    Article  CAS  Google Scholar 

  24. Konstanty, J. and Romanski, A., New nanocrystalline matrix materials for sintered diamond tools, Mater. Sci. Appl., 2012, vol. 3, pp. 779–783.

    CAS  Google Scholar 

  25. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., Nesterenko, Yu.V., Kuzin, N.O., Zakiev, I.M., and Gevorkyan, E.S., A study of microstructure of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    Article  CAS  Google Scholar 

  26. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Effect of vacuum hot pressing temperature on the mechanical and tribological properties of the Fe–Cu–Ni–Sn–VN composites, Powder Metall. Met. Ceram., 2020, vol. 58, nos. 11–12, pp. 679–691.

    Article  CAS  Google Scholar 

  27. Bondarenko, M.O., Mechnik, V.A., and Suprun, M.V., Shrinkage and shrinkage rate behavior in Cdiamond–Fe–Cu–Ni–Sn–CrB2 system during hot pressing of pressureless-sintered compacts, J. Superhard Mater., 2009, vol. 31, no. 4, pp. 232–240.

    Article  Google Scholar 

  28. Franca, L.F.P., Mostofi, M., and Richard, T., Interface laws for impregnated diamond tools for a given state of wear, Int. J. Rock Mech. Mining Sci., 2015, vol. 73, pp. 184–193.

    Article  Google Scholar 

  29. Jialiang, W., Shaohe, Z., and Fenfei, P., Influence mechanism of hard brittle grits on the drilling performance of diamond bit, J. Annales de Chimie-Science des Materiaux, 2018, vol. 42, no. 2, pp. 209–220.

    Article  Google Scholar 

  30. Bondarenko, N.A., Zhukovsky, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review), Sverkhtverd. Mater., 2006, vol. 28, no. 6, pp. 3–17.

    Google Scholar 

  31. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond containing composites used in drilling and stone working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  32. Mechnyk, V.A., Regularities of structure formation in diamond–Fe–Cu–Ni–Sn–CrB2 systems, Mater. Sci., 2013, vol. 49, no. 1, pp. 93–101.

    Article  CAS  Google Scholar 

  33. Mechnik, V.A., Effect of hot recompaction parameters on the structure and properties of diamond–(Fe–Cu–Ni–Sn–CrB2) composites, Powder Metall. Met. Ceram, 2014, vol. 52, nos. 11–12, pp. 709–721.

    Article  CAS  Google Scholar 

  34. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., and Yutskevych, S.S., Mechanical and tribological properties of Fe−Cu−Ni−Sn materials with different amounts of CrB2 used as matrices for diamond-containing composites, J. Superhard Mater., 2020, vol. 42, no. 4, pp. 251–263.

    Article  Google Scholar 

  35. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Gevorkyan, E.S., Chishkala, V.A., and Kuzin, N.O., Effect of CrB2 on the microstructure, properties, and wear resistance of sintered composite and the diamond retention in Fe–Cu–Ni–Sn matrix, J. Superhard Mater., 2021, vol. 43, no. 3, pp. 175–190.

    Article  Google Scholar 

  36. Han, P., Xiao, F.R., Zou, W.J., and Liao, B., Effect of different oxides addition on the thermal expansion coefficients and residual stresses of Fe-based diamond composites, Ceram. Int., 2014, vol. 40, no. 3, pp. 5007–5013.

    Article  CAS  Google Scholar 

  37. Tyrala, D., Romanski, A., and Konstanty, J., The effects of powder composition on microstructure and properties of hot-pressed matrix materials for sintered diamond tools, J. Mater. Eng. Perform., 2020, vol. 29, pp. 1467–1472.

    Article  CAS  Google Scholar 

  38. Cygan-Baczek, E., Wyzga, P., Cygan, S., Balaand, P., and Romanski, A., Improvement in hardness and wear behaviour of iron-based Mn–Cu–Sn matrix for sintered diamond tools by dispersion strengthening, Materials, 2021, vol. 14., p. 1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eissa, M., El-Fawakhry, K., Ahmed, M.H., and El-Zommor, M., Development of superior high strength low impact transition temperature steels microalloyed with vanadium and nitrogen, J. Mater. Sci. Technol., 1997, no. 5, pp. 3–19.

  40. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Storchak, M., Dub, S.N., and Kuzin, N.O., Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods, Tribol. Ind., 2019, vol. 41, no. 2, pp. 188–198.

    Article  Google Scholar 

  41. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Formation of Fe–Cu–Ni–Sn–VN nanocrystalline matrix by vacuum hot pressing for diamond-containing composite. Mechanical and tribological properties, J. Superhard Mater., 2019, vol. 41, no. 6, pp. 388–401.

    Article  Google Scholar 

  42. Han, Y., Zhang, S., Bai, R., Zhou, H., Su, Z., Wu, J., and Wang, J., Effect of nano-vanadium nitride on microstructure and properties of sintered Fe–Cu-based diamond composites, Int. J. Refract. Met. Hard Mater., 2020, vol. 91, p. 105256.

    Article  CAS  Google Scholar 

  43. Gao, J. and Thompson, R.G., Real time-temperature models for Monte Carlo simulations of normal grain growth, Acta Mater., 1996, vol. 44, no. 11, pp. 4565–4570.

    Article  CAS  Google Scholar 

  44. Abedinzadeh, R., Safavi, S.M., and Karimzadeh, E., A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite, J. Mech. Sci. Technol., 2016, vol. 30, no. 5, pp. 1967–1972.

    Article  Google Scholar 

  45. He, Z. and Ma, J., Grain-growth law during Stage 1 sintering of materials, J. Phys. D: Appl. Phys., 2002, vol. 35, no. 17, pp. 2217–2221.

    Article  CAS  Google Scholar 

  46. Kodash, V.Y. and Gevorkian, E.S., Pat. 6617271 B1 USA, IC C04B 35/56, 2003.

  47. Evans, A.G. and Charles, E.A., Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 1976, vol. 59, nos. 7–8, pp. 371–372.

    Article  CAS  Google Scholar 

  48. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Kuzin, N.O., and Gevorkyan, E.S., Influence of diamond-matrix transition zone structure on mechanical properties and wear of sintered diamond-containing composites based on Fe–Cu–Ni–Sn matrix with varying CrB2 content, Int. J. Refract. Met. Hard Mater., 2021, vol. 100, p. 105655.

    Article  CAS  Google Scholar 

  49. Selected Powder Diffraction Data for Education and Training (Search Manual and Data Cards), USA: International Centre for Diffraction Data, 1988.

Download references

Funding

This study was performed within the framework of State Budget Research Topics in accordance with Coordination Plans of the Ministry of Education and Science of Ukraine (State registration no. 0120U100105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechnik, V.A., Bondarenko, N.A., Prikhna, T.A. et al. Phase Formation and Physical and Mechanical Properties of Fe‒Cu–Ni‒Sn–VN Composites Sintered by Vacuum Hot Pressing for the Diamond Stone Processing Tools. J. Superhard Mater. 44, 160–169 (2022). https://doi.org/10.3103/S1063457622030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622030066

Keywords:

Navigation